<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
LU Jun-hu, JIN Lei, GAO Shi-qiao, GAO Chun-hui, Lü Qing-shan, LIU Hai-peng. Optimization design and experimental test of an electret-based electrostatic energy harvester[J]. Chinese Journal of Engineering, 2018, 40(4): 492-499. doi: 10.13374/j.issn2095-9389.2018.04.013
Citation: LU Jun-hu, JIN Lei, GAO Shi-qiao, GAO Chun-hui, Lü Qing-shan, LIU Hai-peng. Optimization design and experimental test of an electret-based electrostatic energy harvester[J]. Chinese Journal of Engineering, 2018, 40(4): 492-499. doi: 10.13374/j.issn2095-9389.2018.04.013

Optimization design and experimental test of an electret-based electrostatic energy harvester

doi: 10.13374/j.issn2095-9389.2018.04.013
  • Received Date: 2017-06-12
  • A theoretical model of a vibrating electret electrostatic energy harvester for a double-ended fixed beam was established herein for a low-frequency vibration energy in the environment. The key parameters of the electrostatic energy harvester were optimized by a MATLAB/Simulink numerical analysis. The relationship between the output power, resonant frequency, and half-power bandwidth and the electret surface potential, air gap, and load resistance was also studied. The magnitude of the external excitation acceleration and the size of the electret remained constant. The numerical results are as follows:(1) the existence of an optimal surface potential makes the output power of the electrostatic energy harvester reach the maximum value. The soft spring effect gradually increases with the increase of the surface potential, making the resonant frequency of the energy harvester device shift. The bandwidth also gradually increases. (2) An optimal initial air gap maximizes the power when the surface potential is constant. The half-power bandwidth decreases as the gap increases. (3) An optimal load maximizes the power when the surface potential and the air gap remains constant. The resonant frequency is offset as the load decreases. (4) An optimal load is used to maximize the half-power bandwidth when the air gap is constant. The larger the surface potential, the greater the half-power bandwidth under the same load. Experiments show that the output characteristics of the energy harvester under different load resistances have the following characteristics:with the increase of the load resistance, the output power and the half-power bandwidth increase at the beginning, then decrease. The maximum output power is 0.188 mW when the load resistance is 90 MΩ. In addition, the half-power bandwidth reaches the maximum value of 4.7 Hz when the load resistance is 330 MΩ.

     

  • loading
  • [1]
    Lesser V, Ortiz C L, Tambe M. Distributed Sensor Networks:A Multiagent Perspective. Springer Science & Business Media, 2003
    [3]
    Chan M, Estève D, Fourniols J Y, et al. Smart wearable systems:current status and future challenges. Artif Intell Med, 2012, 56(3):137
    [4]
    Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 2006, 17(12):R175
    [5]
    Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct, 2007, 16(3):R1
    [6]
    Li P, Gao S Q, Cai H T. Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol, 2015, 21(2):401
    [7]
    Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sens Actuators A, 1996, 52(1-3):8
    [8]
    Challa V R, Prasad M G, Fisher F T. A coupled piezoelectricelectromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater Struct, 2009, 18(9):95029
    [9]
    Crovetto A, Wang F, Hansen O. Modeling and optimization of an electrostatic energy harvesting device. J Microelectromech Syst, 2014, 23(5):1141
    [10]
    Chiu Y, Lee Y C. Flat and robust out-of-plane vibrational electret energy harvester. J Micromech Microeng, 2013, 23(1):015012
    [11]
    Asanuma H, Hara M, Oguchi H, et al. Air gap optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets. J Micromech Microeng, 2015, 25(10):104013
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (755) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频