Citation: | LU Jun-hu, JIN Lei, GAO Shi-qiao, GAO Chun-hui, Lü Qing-shan, LIU Hai-peng. Optimization design and experimental test of an electret-based electrostatic energy harvester[J]. Chinese Journal of Engineering, 2018, 40(4): 492-499. doi: 10.13374/j.issn2095-9389.2018.04.013 |
[1] |
Lesser V, Ortiz C L, Tambe M. Distributed Sensor Networks:A Multiagent Perspective. Springer Science & Business Media, 2003
|
[3] |
Chan M, Estève D, Fourniols J Y, et al. Smart wearable systems:current status and future challenges. Artif Intell Med, 2012, 56(3):137
|
[4] |
Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 2006, 17(12):R175
|
[5] |
Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct, 2007, 16(3):R1
|
[6] |
Li P, Gao S Q, Cai H T. Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol, 2015, 21(2):401
|
[7] |
Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sens Actuators A, 1996, 52(1-3):8
|
[8] |
Challa V R, Prasad M G, Fisher F T. A coupled piezoelectricelectromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater Struct, 2009, 18(9):95029
|
[9] |
Crovetto A, Wang F, Hansen O. Modeling and optimization of an electrostatic energy harvesting device. J Microelectromech Syst, 2014, 23(5):1141
|
[10] |
Chiu Y, Lee Y C. Flat and robust out-of-plane vibrational electret energy harvester. J Micromech Microeng, 2013, 23(1):015012
|
[11] |
Asanuma H, Hara M, Oguchi H, et al. Air gap optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets. J Micromech Microeng, 2015, 25(10):104013
|