<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
YUAN Fei, YANG Guang, XU An-jun, FENG Kai. Thermal state simulation analysis of molten iron ladle based on different insulation measures[J]. Chinese Journal of Engineering, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005
Citation: YUAN Fei, YANG Guang, XU An-jun, FENG Kai. Thermal state simulation analysis of molten iron ladle based on different insulation measures[J]. Chinese Journal of Engineering, 2018, 40(1): 31-40. doi: 10.13374/j.issn2095-9389.2018.01.005

Thermal state simulation analysis of molten iron ladle based on different insulation measures

doi: 10.13374/j.issn2095-9389.2018.01.005
  • Received Date: 2017-06-12
  • The turnover time for transporting a hot metal from a blast furnace to a basic oxygen furnace is long and therefore the heat preservation effects are not ideal. These factors affect the temperature and thermal state of the ladle refractories, which leads to the heat loss of the hot metal. Reducing the temperature drop of the hot metal can effectively prevent the hot metal nodules and decrease the frequency of offline baking; moreover, it indirectly increases the turnover rate of the hot metal ladle. At the same time, a hot metal with low temperature seriously affects the addition amount of scrap steel and oxygen blowing operations during the smelting process in the converter. Therefore, it can be observed that controlling the hot metal temperature is one of the key factors for energy saving and efficient production in a steel plant. To reduce the temperature drop of a hot metal, a variety of computation models of ladles with several insulation measures were established. In addition, the Ansys fluent software was used to simulate the temperature fields after the end of the charging. The influence of thermal states of ladles with different insulation measures and unloaded time on the temperature drop of the hot metal was investigated. The analysis shows that reducing the unloaded time from 5 h to 3 h can decrease the temperature loss of the hot metal by 2.2 K·h-1. Using a ladle with an insulation layer of about 6 mm and an insulation cap is the most sensible measure to realize insulation. It can increase the average temperature of a working layer by almost 155 K, and this improvement can reduce the temperature loss of hot metal by 3.4-3.7 K·h-1 during the 3 to 5 h unloaded time. The conclusions provide some academic bases and references for the reasonable insulation measures and control of the unloaded time of a multifunctional hot metal ladle.

     

  • loading
  • [1]
    Tian H Y, Chen F R, Xie R J, et al. Finite element analysis of 100 t hot metal ladle in process of tipping. J Iron Steel Res Int, 2010, 17(11):19
    [6]
    Huang B F, Tian N Y, Ma Z W, et al. Control model of multifunctional hot metal ladles. J Iron Steel Res Int, 2016, 23(12):1262
    [7]
    Huang B F, Tian N Y, Shi Z, et al. Material flow control technology of ironmaking and steelmaking interface. J Cent South Univ, 2014, 21(9):3559
    [9]
    Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9):1591
    [10]
    Kabakov Z K, Pakholkova M A. Reducing the loss of heat from steel in steel-pouring ladles. Metallurgist, 2013, 56(9-10):670
    [12]
    Kochubeev Y N, Kungurtsev V N, Mironova L V, et al. A technology for production of composite refractory materials for the lining of steel ladles. Refract Ind Ceram, 2005, 46(2):81
    [14]
    Wu P F, Xu A J, Tian N Y, et al. Steel temperature compensating model with multi-factor coupling based on ladle thermal state. J Iron Steel Res Int, 2012, 19(5):9
    [15]
    Martynenko G M, Maltsev S M, Zabolotnyi S A. Ceramoconcrete refractory and heat-insulating components in ferrous and nonferrous metallurgy. Refract Ind Ceram, 2009, 50(3):163
    [17]
    Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature. Scand J Metall, 2000, 29(6):232
    [18]
    Yu J K, Han L. Preparation of nanoporous thermal insulating materials and their application as ladle linings. China Refract, 2014, 23(4):13
    [19]
    Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period. Metall Mater Trans B, 2001, 32(4):733
    [21]
    Li G F, Liu J, Jiang G Z, et al. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv Mech Eng, 2015, 7(4):1
    [22]
    Gleiser M, Wilflingseder F, Eder J. Concepts of refractory lining for pig-iron ladles. Refract Ind Ceram, 2007, 48(2):77
    [23]
    Liu S W, Yu J K, Mao F X. Thermal behavior modeling of interior refractory lining of torpedo-ladle by finite element method. Adv Mater Res, 2011, 282-283:444
    [24]
    Glaser B, Görnerup M, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12):1425
    [25]
    Gu Z X, Xu A J, Chang J B, et al. Optimization of the production organization pattern in Tangshan Iron and Steel Co. Ltd. J Iron Steel Res Int, 2014, 21(Suppl 1):17
    [26]
    Zhou J A, Xie J B, Wang B, et al. New insight into investigation of thermal transfer of molten steel inside a ladle with vacuum shell. J Therm Anal Calorim, 2017, 128(1):481
    [28]
    Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)-volume of fluid (VOF) coupled model. JOM, 2015, 67(7):1459
    [29]
    Morales R D, Garcia-Hernandez S, Barreto J D J, et al. Multiphase flow modeling of slag entrainment during ladle change-over operation. Metall Mater Trans B, 2016, 47(4):2595
    [30]
    Fredman T P, Torrkulla J, Saxén H. Two-dimensional dynamic simulation of the thermal state of ladles. Metall Mater Trans B, 1999, 30(2):323
    [32]
    Visloguzova É A, Kashcheev I D, Serova L V, et al. Corundumpericlase-carbon refractories for lining steel-pouring ladles. Refract Ind Ceram, 2010, 51(1):9
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (704) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频