<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
CHEN Shao-hua, ZHANG Mai-cang, JIA Meng-liu, PENG Tao. Effect of cyclic heat treatment with hot deformation on the microstructure and structural orientation of TC17 titanium alloy lamellae[J]. Chinese Journal of Engineering, 2017, 39(12): 1844-1850. doi: 10.13374/j.issn2095-9389.2017.12.010
Citation: CHEN Shao-hua, ZHANG Mai-cang, JIA Meng-liu, PENG Tao. Effect of cyclic heat treatment with hot deformation on the microstructure and structural orientation of TC17 titanium alloy lamellae[J]. Chinese Journal of Engineering, 2017, 39(12): 1844-1850. doi: 10.13374/j.issn2095-9389.2017.12.010

Effect of cyclic heat treatment with hot deformation on the microstructure and structural orientation of TC17 titanium alloy lamellae

doi: 10.13374/j.issn2095-9389.2017.12.010
  • Received Date: 2017-04-25
  • The effects of cyclic heat treatment and hot deformation on the spheroidization and orientation of the TC17 titanium alloy were investigated using a light microscope (LM) and electron backscattered diffraction (EBSD). The experimental results indicate that in the two-phase temperature range of a simple, cycle heat treatment, the spheroidization of the lamellar microstructure of the TC17 titanium alloy is finite. After cyclic heat treatment and compression deformation, the Widmannstatten structure disappears, the spheroidized α lamellae is more obvious, but the uniformity of its orientation is not greatly improved. In addition, the recrystallization velocity, and the strength and toughness of the two phases in deformation lead to a difference in their orientation, and the recrystallization velocity of the α phase is faster than that of the β phase. In the deformation process, the anisotropy of the α phase is preferentially reduced. On the other hand, during the hot deformation process, the degree of deformation of the α phase is lower than that of the β phase, because the α phase is harder than the β phase. The strain is primarily concentrated on the softer β phase adjacent to α phase, which produces greater uniformity in α phase than in the β phase.

     

  • loading
  • [1]
    Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys-an overview. Mater Sci Eng A, 1998, 243(1-2):46
    [2]
    Williams J C, Starke E A. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51(19):5775
    [3]
    Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834. Mater Sci Eng A, 2005, 396(1-2):50
    [4]
    Boyer R, Welsch G, Collings E W, et al. Materials Properties Handbook:Titanium Alloys. USA:ASM International,1994
    [10]
    Xu J W, Zeng W D, Jia Z Q, et al. Microstructure coarsening behavior of Ti-17 alloy with equiaxed alpha during heat treatment. J Alloy Compd, 2015, 618:343
    [11]
    Xu J W, Zeng W D, Sun X, et al. Static coarsening behavior of the lamellar alpha in Ti-17 alloy. J Alloy Compd, 2015, 631:248
    [14]
    Xia Q F, Wang J N, Wang Y, et al. Effect of heating rate on the grain refinement of a TiAl alloy by cyclic heat treatment. Mater Sci Eng A, 2001, 300(1-2):309
    [15]
    Yang J, Wang J N, Xia Q F, et al. Effect of cooling rate on the grain refinement of TiAl-based alloys by rapid heat treatment. Mater Lett, 2000, 46(4):193
    [16]
    Yang J, Wang J N, Wang Y, et al. Control of the homogeneity of the lamellar structure of a TiAl alloy refined by heat treatment. Intermetallics, 2001, 9(5):369
    [17]
    Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A, 1998, 243(1-2):32
    [18]
    Engler O, Randle V. Introduction to Texture Analysis:Macrotexture, Micro-Texture, Orientation Mapping. Florida:CRC Press, 2000
    [19]
    Seshacharyulu T, Medeiros S C, Morgan J T, et al. Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V. Mater Sci Eng A, 2000, 279(1-2):289
    [20]
    Terlinde G, Fischer G. Beta Titanium Alloys//Titanium and Titanium Alloys:Fundamentals and Applications. Cologne:Wiley-VCH, 2005:37
    [21]
    Ouchi C, Fujishiro S, Eylon D, et al. Metallurgy and Technology of Practical Titanium Alloys. Warrendale:TMS, 1994
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (674) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频