<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
JIANG Chen, WANG Hao-wen, LI Jian-ke, LI Liang-jun. Trajectory-tracking hybrid controller based on ADRC and adaptive control for unmanned helicopters[J]. Chinese Journal of Engineering, 2017, 39(11): 1743-1752. doi: 10.13374/j.issn2095-9389.2017.11.018
Citation: JIANG Chen, WANG Hao-wen, LI Jian-ke, LI Liang-jun. Trajectory-tracking hybrid controller based on ADRC and adaptive control for unmanned helicopters[J]. Chinese Journal of Engineering, 2017, 39(11): 1743-1752. doi: 10.13374/j.issn2095-9389.2017.11.018

Trajectory-tracking hybrid controller based on ADRC and adaptive control for unmanned helicopters

doi: 10.13374/j.issn2095-9389.2017.11.018
  • Received Date: 2017-01-18
  • To enable unmanned helicopters to fly autonomously in precise paths and to reduce the influence of helicopter dynamic model error, this paper proposes a hybrid controller with active disturbance rejection control (ADRC) and adaptive control for trajectory tracking. This paper proposes the model reference adaptive control strategy for the inner-loop controller. This paper uses the momentum back-propagation (MOBP) neural network algorithm to tune the parameters of the proposed inner-loop controller. This paper uses ADRC in the proposed controller for velocity control. The simulation results indicate that the proposed controller can achieve good trajectory tracking. Compared with the PID controller and cascade ADRC, the proposed hybrid controller is more robust and has better anti-disturbance capability. This paper uses the proposed hybrid controller for trajectory-tracking control of the XV-2, which is an unmanned helicopter with a gross take-off weight level of 200 kg. With the help of the hybrid controller in our flight test, the root mean square error of the XV-2 trajectory-tracking control is within 0.6 m.

     

  • loading
  • [1]
    Nonami K. Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV. J Syst Des Dyn, 2007, 1(2):120
    [4]
    Budiyono A, Wibowo S S. Optimal tracking controller design for a small scale helicopter. J Bionic Eng, 2007, 4(4):271
    [5]
    Kung C C, Yang C D, Chiou D W, et al. Nonlinear H∞ helicopter control//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, 2002:4468
    [6]
    Walter L, Fleischmann S, Schlöffel G, et al. Real-time optimal gain scheduling for nonlinear dynamic inversion//AIAA Guidance, Navigation, and Control Conference. National Harbor, 2014:1480
    [7]
    Król D, Lower M, Szlachetko B. Selection and setting of an intelligent fuzzy regulator based on nonlinear model simulations of a helicopter in hover. New Generation Computing, 2009, 27(3):215
    [16]
    Bichlmeier M, Holzapfel F, Xargay E, et al. L1 adaptive augmentation of a helicopter baseline controller//AIAA Guidance, Navigation and Control Conference. Boston, 2013:4855
    [17]
    Vogl T P, Mangis J K, Rigler A K, et al. Accelerating the convergence of the back-propagation method. Biol Cybernetics, 1988, 59(4-5):257
    [18]
    Adigun J O, Omidiora E O, Olabiyisi S O, et al. A modified genetic based neural network model for online character recognition. Int J Appl Inf Syst, 2015, 9(5):18
    [19]
    Wang J Z, Wang J J, Zhang Z G, et al. Forecasting stock indices with back propagation neural network. Expert Syst Appl, 2011, 38(11):14346
    [20]
    Cai G W, Chen B M, Lee T H. Unmanned Rotorcraft Systems. New York:Springer Science & Business Media, 2011
    [23]
    Guo B Z, Han J Q. A linear tracking-differentiator and application to the online estimation of the frequency of a sinusoidal signal//Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, 2000:9
    [24]
    Guo B Z, Han J Q, Xi F B. Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. Int J Syst Sci, 2002, 33(5):351
    [25]
    Guo B Z, Zhao Z L. On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst Control Lett, 2011, 60(6):420
    [26]
    Talole S E, Kolhe J P, Phadke S B. Extended-state-observerbased control of flexible-joint system with experimental validation. IEEE Trans Ind Electron, 2010, 57(4):1411
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (940) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频