Citation: | XU Gang, ZHANG Xiao-tong, LI Min, XU Jin-wu. An outlier detection algorithm based on a soft hyper-sphere for high dimension nonlinear data[J]. Chinese Journal of Engineering, 2017, 39(10): 1552-1558. doi: 10.13374/j.issn2095-9389.2017.10.014 |
[1] |
Zimek A, Schubert E, Kriegel H P. A survey on unsupervised outlier detection in high-dimensional numerical data. Statist Anal Data Min ASA Data Sci, 2012, 5(5):363
|
[2] |
Guo J H, Huang W, Williams B M. Real time traffic flow outlier detection using short-term traffic conditional variance prediction. Transport Res C Emerg Technol, 2015, 50:160
|
[6] |
Johnson J E. A User's Guide to Principal Components. New York:John Wiley&Sons Inc, 1991
|
[7] |
Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method. Matrix Pencils, 1983, 973:286
|
[8] |
Tax D M J. One-Class Classification[Dissertation]. Dutch:Delft University of Technology, 2001
|
[9] |
Liu B, Xiao Y, Cao L, et al. SVDD-based outlier detection on uncertain data. Knowl Inform Syst, 2013, 34(3):597
|
[10] |
Sakla W, Chan A, Ji J, et al. An SVDD-based algorithm for target detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett, 2011, 8(2):384
|
[11] |
Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. England:Cambridge University Press, 2004
|
[12] |
Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing Kernel Hillbert space. J Mach Learn Res, 2001, 2:97
|
[13] |
Bach F R, Jordan M I. Kernel independent component analysis. J Mach Learn Res, 2002, 3:1
|