<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
ZHOU Ying, YANG Jing-song, FU Dong-mei, YUE Bin. BCOISOA-BP network in grinding particle size soft sensor applications[J]. Chinese Journal of Engineering, 2017, 39(10): 1546-1551. doi: 10.13374/j.issn2095-9389.2017.10.013
Citation: ZHOU Ying, YANG Jing-song, FU Dong-mei, YUE Bin. BCOISOA-BP network in grinding particle size soft sensor applications[J]. Chinese Journal of Engineering, 2017, 39(10): 1546-1551. doi: 10.13374/j.issn2095-9389.2017.10.013

BCOISOA-BP network in grinding particle size soft sensor applications

doi: 10.13374/j.issn2095-9389.2017.10.013
  • Received Date: 2016-12-01
  • The traditional seeker optimization algorithm (SOA) uses three steps for an optimal search:calculating the search direction, searching the step length, and updating the individual position. Its shortcomings are the large amount of calculation required and weak communication between populations, which results in low speed optimization. To address these disadvantages, this paper offers the binomial crossover operator improved seeker optimization algorithm (BCOISOA) as an improvement. In terms of computational search step length, this paper adopts a random number and maximum function product judgment subgroup location so that global optimization computation speed can be improved. In terms of update location, this paper puts forward two crossover operators to strengthen the connection between the populations. This avoids premature convergence of the algorithm during the process of updating the search direction, caused by the local optimum, and achieves a fast and accurate optimal solution. This article usesthe BCOISOA-BP neural network algorithm for a two-phase grinding process to achieve a grind size online soft sensor. Compared with the SOA and PSO algorithms, the simulation result shows that the BCOISOA algorithm has the fastest convergence speed and highest precision. It therefore satisfies the requirements of grind size real-time detection.

     

  • loading
  • [1]
    Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE T Autom Sci Eng,2009, 6(4):730
    [7]
    Maji K B, Sree U S, Kar R, et al. Butterworth filter design using seeker optimization algorithm//2015 International Conference on Science and Technology (TICST). PathumThani, 2015:298
    [10]
    Parvaneh H, Dizgah S M, Sedighizadeh M, et al. Load frequency control of a multi-area power system by optimum designing of frequency-based PID controller using seeker optimization algorithm//20166th Conference on Thermal Power Plants (CTPP). Tehran, 2016:52
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (640) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频