<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
FU Tian-liang, DENG Xiang-tao, HAN Jun, LIU Guang-hao, WANG Zhao-dong. Surface heat transfer of jet array impingement quenching for ultra-heavy plate[J]. Chinese Journal of Engineering, 2017, 39(9): 1339-1346. doi: 10.13374/j.issn2095-9389.2017.09.006
Citation: FU Tian-liang, DENG Xiang-tao, HAN Jun, LIU Guang-hao, WANG Zhao-dong. Surface heat transfer of jet array impingement quenching for ultra-heavy plate[J]. Chinese Journal of Engineering, 2017, 39(9): 1339-1346. doi: 10.13374/j.issn2095-9389.2017.09.006

Surface heat transfer of jet array impingement quenching for ultra-heavy plate

doi: 10.13374/j.issn2095-9389.2017.09.006
  • Received Date: 2016-10-10
  • Using the ultra-heavy-plate jet-impingement quenching test device and the multi-channel temperature recorder, 84 mm large section plates quenching temperature drop curve was experimentally investigated under the condition of jet velocities ranging from 3.39 to 26.8 m·s-1, Reynolds number from 12808 to 117340 and jet densities ranging from 978.7 to 6751.5 L·(m2·min)-1. Then, wall heat flux, heat transfer coefficient and boiling curve were calculated with inverse heat transfer modified method. The results indicate that both jet velocity and jet density influence the plate surface heat transfer mechanism and the distribution of the maximum heat flux. When jet velocity is low, a mixed heat transfer and "heat flux shoulder" phenomenon can be observed in wall parallel flow zone. With increased jet velocity, the film boiling heat transfer mechanism disappears and the maximum heat flux changes to the low-wall superheat position. These research results benefit the calculation of the temperature field and the control of structure property during ultra-heavy plate quenching.

     

  • loading
  • [1]
    Wang H M, Yu W, Cai Q W. Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling. J Mater Process Technol, 2012, 212(9):1825
    [2]
    Malinowski Z, Telejko T, Hadała B, et al. Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water. Int J Heat Mass Trans, 2014, 75:347
    [3]
    Li X T, Wang M T, Du F S. A coupled thermal mechanical and microstructural FE model for hot strip continuous rolling process and verification. Mater Sci Eng A, 2005, 408(1-2):33
    [4]
    Karwa N, Gambaryan-Roisman T, Stephan P, et al. Experimental investigation of circular free-surface jet impingement quenching:transient hydrodynamics and heat transfer. Exp Therm Fluid Sci, 2011, 35(7):1435
    [5]
    Karwa N, Stephan P. Experimental investigation of free-surface jet impingement quenching process. Int J Heat Mass Trans, 2013, 64:1118
    [6]
    Wang L, Sundén B, Borg A, et al. Heat transfer characteristics of an impinging jet in crossflow. J Heat Trans, 2011, 133(12):122202-1
    [7]
    Lindeman B A, Anderson J M, Shedd T A. Predictive model for heat transfer performance of oblique and normally impinging jet arrays. Int J Heat Mass Trans, 2013, 62:612
    [8]
    Gradeck M, Kouachi A, Lebouché M, et al. Boiling curves in relation to quenching of a high temperature moving surface with liquid jet impingement. Int J Heat Mass Trans, 2009, 52(5-6):1094
    [9]
    Robidou H, Auracher H, Gardin P, et al. Controlled cooling of a hot plate with a water jet. Exp Therm Fluid Sci, 2002, 26(2-4):123
    [10]
    Liu Z H, Wang J. Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int J Heat Mass Trans, 2001, 44(13):2475
    [12]
    Fu T L, Wang Z D, Li Y, et al. The influential factor studies on the cooling rate of roller quenching for ultra heavy plate. Appl Therm Eng, 2014, 70(1):800
    [13]
    Leocadio H, Passos J C, da Silva A F C. Heat transfer behavior of a high temperature steel plate cooled by a subcooled impinging circular water jet//7th ECI International Conference on Boiling Heat Transfer. Santa Catarina, 2009:429
    [14]
    Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching. Int J Heat Mass Trans, 2009, 52(1-2):460
    [15]
    Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement. Int J Heat Mass Trans, 2006, 49(17-18):2877
    [17]
    Li D F. Boiling Water Heat Transfer during Quenching of Steel Plates and Tubes[Dissertation]. Vancouver:University of British Columbia, 2003
    [18]
    Hernandez-Avila V H. Modeling of the Thermal Evolution of Steel Strips Cooled in the Hot Rolling Runout Table[Dissertation]. Vancouver:University of British Columbia, 2000
    [19]
    Hall D E, Incropera F P, Viskanta R. Jet impingement boiling from a circular free-surface jet during quenching:Part 1-single phase jet. J Heat Trans, 2001, 123:901
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (773) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频