<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
LIU Ling-jun, XIE Zhong-hua, FENG Jiu-chao, YANG Cui. Fast recovery algorithm based on Boltzmann machine and MMSE criterion[J]. Chinese Journal of Engineering, 2017, 39(8): 1254-1260. doi: 10.13374/j.issn2095-9389.2017.08.016
Citation: LIU Ling-jun, XIE Zhong-hua, FENG Jiu-chao, YANG Cui. Fast recovery algorithm based on Boltzmann machine and MMSE criterion[J]. Chinese Journal of Engineering, 2017, 39(8): 1254-1260. doi: 10.13374/j.issn2095-9389.2017.08.016

Fast recovery algorithm based on Boltzmann machine and MMSE criterion

doi: 10.13374/j.issn2095-9389.2017.08.016
  • Received Date: 2016-09-12
  • Fully connected Boltzmann machine models can be used to provide a comprehensive description of statistical dependencies between sparse coefficients but with high time complexity. To improve the speed and quality of the Boltzmann machine-Bayesian matching pursuit (BM-BMP) method, an improved algorithm was proposed. First, the maximum a posteriori (MAP) estimation of the BM-BMP algorithm is decomposed into its value at the last iteration and an increment; thus, it only needs to calculate the increment in each iteration, which greatly reduces the computational time. Second, by calculating the mean of the significant MAP estimations, an effective approximation is obtained for the minimum mean square error (MMSE) estimation and a smaller reconstruction error is achieved. Compared with the BM-BMP, this method reduces the running time on average by 73.66% while improving the peak signal to noise ratio (PSNR) by 0.57 dB.

     

  • loading
  • [2]
    Xie Z B, Feng J C. KFCE:a dictionary generation algorithm for sparse representation. Signal Process, 2009, 89(10):2072
    [2]
    Tuna G, Nefzi B, Conte G. Unmanned aerial vehicle-aided communications system for disaster recovery. J Network Comput Appl, 2014, 41:27
    [3]
    Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53(12):4655
    [3]
    García-Laencina P J, Rodríguez-Bermudez G, Roca-Dorda J. Exploring dimensionality reduction of EEG features in motor imagery task classification. Expert Syst Appl, 2014, 41(11):5285
    [4]
    Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55(5):2230
    [5]
    Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56(6):2346
    [6]
    Velasco-Álvarez F, Ron-Angevin R, da Silva-Sauer L, et al. Audio-cued motor imagery-based brain-computer interface:navigation through virtual and real environments. Neurocomputing, 2013, 121:89
    [6]
    Elad M, Yavneh I. A plurality of sparse representations is better than the sparsest one alone. IEEE Trans Inf Theory, 2009, 55(10):4701
    [7]
    Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals:uncertainty relations and efficient recovery. IEEE Trans Signal Process, 2010, 58(6):3042
    [7]
    Elnady A M, Zhang X, Xiao Z G, et al. A single-session preliminary evaluation of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform. Frontiers Human Neurosci, 2015, 9:168
    [8]
    Kim B H, Kim M, Jo S. Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking. Comput Biol Med, 2014, 51:82
    [8]
    Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing. IEEE Trans Inf Theory, 2010, 56(4):1982
    [9]
    Zhang Z L, Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans Signal Process, 2013, 61(8):2009
    [10]
    Fang J, Shen Y N, Li H B, et al. Pattern-coupled sparse bayesian learning for recovery of block-sparse signals. IEEE Trans Signal Process, 2015, 63(2):360
    [10]
    Li W, He Q C, Fan X M, et al. Evaluation of driver fatigue on two channels of EEG data. Neurosci Lett, 2012, 506(2):235
    [11]
    Wang Y K, Chen S A, Li C T. An EEG-based brain-computer interface for dual task driving detection. Neurocomputing, 2014, 129:85
    [11]
    He L H, Carin L. Exploiting structure in wavelet-based bayesian compressive sensing. IEEE Trans Signal Process, 2009, 57(9):3488
    [12]
    Garrigues P J, Olshausen B A. Learning horizontal connections in a sparse coding model of natural images//Advances in Neural Information Processing Systems (NIPS). Vancouver, 2007:1
    [12]
    Stock M G, Akita M, Krehbiel P R, et al. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. J Geophysical Res Atmospheres, 2014, 119(6):3134
    [13]
    Lliff K W. Maximum likelihood estimation of lift and drag from dynamic aircraft maneuvers. J Aircraft, 1977, 14(12):1175
    [13]
    Dremeau A, Herzet C, Daudet L. Boltzmann machine and mean-field approximation for structured sparse decompositions. IEEE Trans Signal Process, 2012, 60(7):3425
    [14]
    Peleg T, Eldar Y, Elad M. Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans Signal Process, 2012, 60(5):2286
    [15]
    Chen C L P, Zhang C Y, Chen L, et al. Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Trans Fuzzy Systems, 2015, 23(6):2163"[1] Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor. IEEE Trans Rob, 2012, 28(1):90
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (565) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频