Citation: | MAO Ming-tao, GUO Han-jie, SUN Xiao-lin, WANG Fei, CHEN Xi-chun, GUO Jing. In-situ research of high-temperature behavior of primary carbide in H13 steel[J]. Chinese Journal of Engineering, 2017, 39(8): 1174-1181. doi: 10.13374/j.issn2095-9389.2017.08.006 |
[1] |
Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Metall Trans B, 1986, 17(4):845
|
[2] |
Matsumiya T, Kajioka H, Mizoguchi S, et al. Mathematical analysis of segregations in continuously-cast slabs. Trans Iron Steel Inst Jpn, 1984, 24(11):873
|
[6] |
Maity S K, Ballal N B, Kawalla R. Development of ultra-high strength steel by electroslag refining:effect of inoculation of titanium on the microstructures and mechanical properties. ISIJ Int, 2006, 46(9):1361
|
[8] |
Corwyn B M, Finn J. The effect of annealed microstructure on the impact toughness of premium H-13 die steel//NADCA 18th International Die Casting Congress and Exposition. Pennsylvania, 1995:357
|
[9] |
Torkar M, Vodopivec F, Petovar S. Analysis of segregations in as-cast X40CrMoV51 steel. Mater Sci Eng A, 1993, 173(1-2):313
|
[11] |
Liu X G, Meng D N, Wang Y H, et al. Influences of high-temperature diffusion on the homogenization and high-temperature fracture behavior of 30Cr1Mo1V. J Mater Eng Perform, 2015, 24(2):1079
|
[12] |
Bjärbo A, Hättestrand M. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel——an experimental and theoretical study. Metall Mater Trans A, 2001, 32(1):19
|
[13] |
Meng Y, Thomas B G. Heat-transfer and solidification model of continuous slab casting:CON1D. Metall Mater Trans B, 2003, 34(5):685
|
[14] |
Saunders N, Guo U K Z, Li X, et al. Using JMatPro to model materials properties and behavior. JOM, 2003, 55(12):60
|