<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
LIU Yong-bing, ZHOU Ya-kai, FENG Zhi-peng. Application of morphological component analysis for rolling element bearing fault diagnosis[J]. Chinese Journal of Engineering, 2017, 39(6): 909-916. doi: 10.13374/j.issn2095-9389.2017.06.014
Citation: LIU Yong-bing, ZHOU Ya-kai, FENG Zhi-peng. Application of morphological component analysis for rolling element bearing fault diagnosis[J]. Chinese Journal of Engineering, 2017, 39(6): 909-916. doi: 10.13374/j.issn2095-9389.2017.06.014

Application of morphological component analysis for rolling element bearing fault diagnosis

doi: 10.13374/j.issn2095-9389.2017.06.014
  • Received Date: 2016-07-13
  • Periodical impulses in vibration signals are key features in rolling element bearing fault diagnosis. Based on an overcomplete dictionary composed of different morphological atoms, morphological component analysis can be used to extract the signal components of different types of morphologies. A new morphological component analysis method based on a novel over-completed dictionary was proposed herein. According to morphological differences between components in rolling element bearing fault vibration signal, the method after improved dictionary could more targeted to extract impulse components containing fault feature. Then through envelope spectrum analysis, the fault characteristic frequency was extracted accurately, and rolling element bearing local faults were diagnosed. Compared with the Fast Kurtogram method for bearing fault diagnosis, the new method could avoid non-accuracy and non-optimality problems caused by artificial choice of resonance band, and improve the effectiveness of fault diagnosis. By analyzing both the simulation signal and the experimental dataset of rolling element bearing faults, the proposed method is validated.

     

  • loading
  • [4]
    Dwyer R. Detection of non-Gaussian signals by frequency domain kurtosis estimation//Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'83. Boston, 1983
    [5]
    Antoni J. Fast computation of the kurtogram for the detection of transient faults. Mech Syst Signal Process, 2007, 21(1):108
    [8]
    Starck J L, Moudden Y, Bobin J, et al. Morphological component analysis. J Brazilian Comput Soc, 2005, 10(3):31
    [9]
    Bobin J, Starck J L, Fadili J M, et al. Morphological component analysis:an adaptive thresholding strategy. IEEE Trans Image Process, 2007, 16(11):2675
    [10]
    Elad M, Starck J L, Querre P, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl Comput Harmonic Anal, 2005, 19(3):340
    [11]
    Starck J L, Elad M, Donoho D. Redundant multiscale transforms and their application for morphological component separation. Adv Imaging Electron Phys, 2004, 132:287
    [12]
    Abrial P, Moudden Y, Starck J L, et al. Morphological component analysis and inpainting on the sphere:application in physics and astrophysics. J Fourier Anal Appl, 2007, 13(6):729
    [16]
    Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Rev, 2006, 43(1):129
    [17]
    Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mech Syst Signal Process, 2000, 14(5):763
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (587) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频