<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
YANG Su-bing, YANG Zhan-bing, WANG Hui. Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel[J]. Chinese Journal of Engineering, 2017, 39(6): 903-908. doi: 10.13374/j.issn2095-9389.2017.06.013
Citation: YANG Su-bing, YANG Zhan-bing, WANG Hui. Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel[J]. Chinese Journal of Engineering, 2017, 39(6): 903-908. doi: 10.13374/j.issn2095-9389.2017.06.013

Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel

doi: 10.13374/j.issn2095-9389.2017.06.013
  • Received Date: 2016-09-23
  • Electron irradiation and simultaneous pulsed-laser and electron dual-beam irradiation were performed using laser high voltage electronic microscopy (HVEM) at 500℃, and the void-denuded zone (VDZ) and radiation-induced segregation (RIS) near the random grain boundary were observed and analyzed after irradiation. Compared to electron irradiation, the effect of simultaneous pulsed-laser and electron dual-beam irradiation on vacancy diffusion was investigated. The results show that the width of VDZ after simultaneous pulsed-laser and electron dual-beam irradiation is 48 ±16 nm which is smaller than the VDZ width of 71 ±27 nm after electron irradiation. Both the magnitude and width of Cr and Ni segregation under simultaneous pulsed-laser and electron dual-beam irradiation are lower than those under electron irradiation. The ratio of vacancy flux of simultaneous pulsed-laser and electron dual-beam irradiation to that of electron irradiation is 45.7%. Compared to electron irradiation, the vacancy flux flowing into point defect sinks is lower owing to enhanced recombination between vacancies and interstitial spaces under simultaneous pulsed-laser and electron dualbeam irradiation. This has the effect of suppressing RIS and void swelling. Therefore, simultaneous pulsed-laser and electron dualbeam irradiation is expected to provide new insights into the suppression of void swelling.

     

  • loading
  • [1]
    Yvon P, Carré F. Structural materials challenges for advanced reactor systems. J Nucl Mater, 2009, 385(2):217
    [3]
    Zinkle S J, Was G S. Materials challenges in nuclear energy. Acta Mater, 2013, 61(3):735
    [5]
    Zinkle S J, Ghoniem N M. Prospects for accelerated development of high performance structural materials. J Nucl Mater, 2011, 417(1):2
    [6]
    Garner F A, Toloczko M B, Sencer B H. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J Nucl Mater, 2000, 276(1):123
    [7]
    Allen T R, Cole J I, Gan J, et al. Swelling and radiation-induced segregation in austentic alloys. J Nucl Mater, 2005, 342(1):90
    [8]
    Neustroev V S, Garner F A. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling. J Nucl Mater, 2009, 386-388:157
    [9]
    Porollo S I, Vorobjev A N, Konobeev Y V, et al. Swelling and void-induced embrittlement of austenitic stainless steel irradiated to 73-82 dpa at 335-365℃. J Nucl Mater, 1998, 258:1613
    [10]
    Armaki H G, Maruyama K, Yoshizawa M, et al. Prevention of the overestimation of long-term creep rupture life by multiregion analysis in strength enhanced high Cr ferritic steels. Mater Sci Eng A, 2008, 490(1):66
    [11]
    Garner F A, Black C A, Edwards D J. Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys. J Nucl Mater, 1997, 245(2):124
    [12]
    Wang X, Yan Q Z, Was G S, et al. Void swelling in ferriticmartensitic steels under high dose ion irradiation:exploring possible contributions to swelling resistance. Scr Mater, 2016, 112:9
    [13]
    Wang X, Monterrosa A M, Zhang F F, et al. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels. J Nucl Mater, 2015, 462:119
    [14]
    Hishinuma A, Katano Y, Shiraishi K. Dose and temperature dependence of void swelling in electron irradiated stainless steel. J Nucl Sci Technol, 1977, 14(10):723
    [15]
    Horiki M, Yoshiie T, Huang S S, et al. Effects of alloying elements on defect structures in the incubation period for void swelling in austenitic stainless steels. J Nucl Mater, 2013, 442(1):S813
    [16]
    Yoshiie T, Sato K, Cao X, et al. Defect structures before steadystate void growth in austenitic stainless steels. J Nucl Mater, 2012, 429(1):185
    [17]
    Yoshiie T, Cao X Z, Sato K, et al. Point defect processes during incubation period of void growth in austenitic stainless steels, Timodified 316SS. J Nucl Mater, 2011, 417(1):968
    [18]
    Kato T, Takahashi H, Izumiya M. Effects ofsystematic modification with oversized elements on void formation in 316L austenitic stainless steel under electron irradiation. Mater Trans JIM, 1991, 32(10):921
    [19]
    Sekio Y, Yamashita S, Sakaguchi N, et al. Effect ofadditional minor elements on accumulation behavior of point defects under electron irradiation in austenitic stainless steels. Mater Trans, 2014, 55(3):438
    [21]
    Watanabe S, Takamatsu Y, Sakaguchi N, et al. Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel. J Nucl Mater, 2000, 283:152
    [22]
    Sekio Y, Yamashita S, Sakaguchi N, et al. Void denuded zone formation for Fe-15Cr-15Ni steel and PNC316 stainless steel under neutron and electron irradiations. J Nucl Mater, 2015, 458:355
    [23]
    Shaikh M A. Void denudation and grain boundary migration in ion-irradiated nickel. J Nucl Mater, 1992, 187(3):303
    [24]
    Watanabe S, Sakaguchi N, Hashimoto N, et al. Radiation-induced segregation accompanied by grain boundary migration in austenitic stainless steel. J Nucl Mater, 1996, 232(2):113
    [25]
    Was G S, Wharry J P, Frisbie B, et al. Assessment of radiationinduced segregation mechanisms in austenitic and ferritic-martensitic alloys. J Nucl Mater, 2011, 411(1):41
    [26]
    Damcott D L, Allen T R, Was G S. Dependence of radiation-induced segregation on dose, temperature and alloy composition in austenitic alloys. J Nucl Mater, 1995, 225:97
    [27]
    Millett P C, Rokkam S, El-Azab A, et al. Void nucleation and growth in irradiated polycrystalline metals:a phase-field model. Modell Simul Mater Sci Eng, 2009, 17(6):064003
    [28]
    Sakaguchi N, Watanabe S, Takahashi H. Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater, 2001, 49(7):1129
    [29]
    Yang Z B, Watanabe S. Dislocation loop formation under various irradiations of laser and/or electron beams. Acta Mater, 2013, 61(8):2966
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (700) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频