<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
CHEN De-ping, HOU Ke-yi, WANG Li-jia, ZHANG Jing-yang. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space[J]. Chinese Journal of Engineering, 2017, 39(6): 811-822. doi: 10.13374/j.issn2095-9389.2017.06.001
Citation: CHEN De-ping, HOU Ke-yi, WANG Li-jia, ZHANG Jing-yang. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space[J]. Chinese Journal of Engineering, 2017, 39(6): 811-822. doi: 10.13374/j.issn2095-9389.2017.06.001

Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space

doi: 10.13374/j.issn2095-9389.2017.06.001
  • Received Date: 2017-02-24
  • Fire-protective super thermal insulator is an inorganic material with a nanopore structure and super-low thermal conductivity. It can be classified as either a sol-gel aerogel-based composite or a fumed oxide-based composite. The matrix oxides are investigated from SiO2 to oxides with higher melting temperatures, including Al2O3 or ZrO2. It was found that the complex component oxides with the appropriate ratios exhibit better thermal stability than single oxide when exposed to fire. The infrared opacifier is a key component to this material that can significantly reduce its high-temperature thermal conductivity. The appropriate selection of opacifiers becomes possible by determining the specific infrared extinction coefficient and performing a numerical calculation based on Mie scattering theory. This fire protection material has high fireproof efficiency while also being very thin and is rated as having high fire resistance. With the development of ambient pressure drying for aerogel-based composite from supercritical drying, this fire protection material can be manufactured at low overall cost and will play an important role in passive fire protection systems in urban underground spaces.

     

  • loading
  • [1]
    Broere W. Urban underground space:solving the problems of today's cities. Tunnelling Underground Space Technol, 2016, 55:245
    [3]
    Zhao J W, Peng F L, Wang T Q, et al. Advances in master planning of urban underground space (UUS) in China. Tunnelling Underground Space Technol, 2016, 55:290
    [8]
    Beard A, Carvel R. The Handbook of Tunnel Fire Safety. London:Thomas Telford, 2005
    [10]
    Hunt A J. Aerogel-a transparent, porous superinsulator//Materials:Performance and Prevention of Deficiencies and Failures:Proceedings of the Materials Engineering Congress. Atlanta, 1992:398
    [11]
    Lysenko V, Roussel P, Remaki B, et al. Study of nano-porous silicon with low thermal conductivity as thermal insulating material. J Porous Mater, 2000, 7(1):177
    [14]
    Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211):741
    [15]
    Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation:an overview. J Sol-Gel Sci Technol, 2012, 63(3):315
    [16]
    Wakili K G, Remhof A. Reaction of aerogel containing ceramic fibre insulation to fire exposure. Fire Mater, 2017, 41(1):29
    [17]
    Saliger R, Heinrich T, Gleissner T, et al. Sintering behaviour of alumina-modified silica aerogels. J Non-Cryst Solids, 1995, 186:113
    [19]
    Komarneni S, Roy R, Selvaraj U, et al. Nanocomposite aerogels:the SiO2-Al2O3 system. J Mater Res, 1993, 8(12):3163
    [20]
    Aravind P R, Mukundan P, Pillai P K, et al. Mesoporous silicaalumina aerogels with high thermal pore stability through hybrid sol-gel route followed by subcritical drying. Microporous Mesoporous Mater, 2006, 96(1-3):14
    [21]
    Levin I, Brandon D. Metastable alumina polymorphs:crystal structures and transition sequences. J Am Ceram Soc, 1998, 81(8):1995
    [22]
    Zu G Q, Shen J, Wei X Q, et al. Preparation and characterization of monolithic alumina aerogels. J Non-Cryst Solids, 2011, 357(15):2903
    [23]
    Keysar S, Shter G E, Hazan Y D, et al. Heat treatment of alumina aerogels. Chem Mater, 1997, 9(11):2464
    [24]
    Mizushima Y, Hori M. Preparation of heat-resistant alumina aerogels. J Mater Res, 1993, 8(11):2993
    [26]
    Wang Q P, Li X L, Fen W P, et al. Synthesis of crack-free monolithic ZrO 2, aerogel modified by SiO2. J Porous Mater, 2014, 21(2):127
    [30]
    White S, Rasky D, Herlth P. Tough, lightweight, superinsulating aerogel/tile composites have potential industrial applications. Mater Technol,1999, 14(1):13
    [34]
    He J, Li X L, Su D, et al. High-strength mullite fibers reinforced ZrO 2-SiO2 aerogels fabricated by rapid gel method. J Mater Sci, 2015, 50(22):7488
    [36]
    Sheng C, Yu Y, Yu Y, et al. Microstructure and thermal characterization of multilayer insulation materials based on silica aerogels. J Inorg Mater, 2013, 28(7):790
    [38]
    Wei G S, Zhang X X, Yu F. Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. J Therm Sci, 2009, 18(2):142
    [39]
    Parmenter K E, Milstein F. Mechanical properties of silica aerogels. J Non-Cryst Solids, 1998, 223(3):179
    [40]
    Liao Y D, Wu H J, Ding Y F, et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J Sol-Gel Sci Technol, 2012, 63(3):445
    [41]
    Nelson R T. Effects of Pressure, Temperature and Gel Thickness on the Kinetics of Supercritical CO2 Drying of Silica Alcogel[Dissertation]. Massachusetts:Tufts University, 2014
    [42]
    Yorov K E, Sipyagina N A, Baranchikov A E, et al. SiO2-TiO2 binary aerogels:synthesis in new supercritical fluids and study of thermal stability. Russian J Inorg Chem, 2016, 61(11):1339
    [43]
    Widipedia. Critical Point (thermaodynamics),[2017-02-24]. https://en.wikipedia.org/wiki/Critical_point_%28thermodynamics%29
    [44]
    Rao A V, Pajonk G M, Bhagat S D, et al. Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n. J NonCryst Solids, 2004, 350:216
    [45]
    Land V D, Harris T M, Teeters D C. Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non-Cryst Solids, 2001, 283(1-3):11
    [47]
    Abe H, Abe I, Sato K, et al. Dry powder processing of fibrous fumed silica compacts for thermal insulation. J Am Ceram Soc, 2005, 88(5):1359
    [49]
    Mortimer M D, Cawley A J, Matthews T M. Microporous Thermal Insulation Material:United States Patent, 20070003751.2007-1-4
    [52]
    STM International. Standard Specification for Microporous Thermal Insulation (2014)[2017-02-22]. https://compass.astm.org/download/C1676C1676M.798.pdf
    [56]
    Boes U R, Ortiz L, Roderick K, et al. Method of Compacting A Fumed Metal Oxide-Containing Composition:United States Patent, 6099749.2000-8-8
    [57]
    McWilliams J A, Morgan D E, Jackson J D J. Method of Manufacturing A Microporous Thermally Insulating Roof:United States Patent, 4925584.1990-5-15
    [58]
    Gliem S, Kleinschmit P, Schwarz R. Process for the Production of Binder-Free Press-Molded Heat-Insulating Parts:United States Patent, 4529532.1985-7-16
    [59]
    Kratel G, Katzer H. Shaped Heat-Insulating Body and Process of Making the Same:United States Patent, 4985163.1991-1-15
    [60]
    Naito M, Kondo A, Yokoyama T. Applications of comminution techniques for the surface modification of powder materials. Iron Steel Inst Jpn Int, 1993, 33(9):915
    [61]
    Naito M, Abe H, Nogi K, et al. Method and Apparatus for Processing Powder and Method of Manufacturing Porous Granulated Substance:United States Patent, 20070228201.2007-10-4
    [68]
    Çengel Y A. Heat Transfer:A Practical Approach. 2nd Ed. New York:MacGraw-Hill, 2003
    [69]
    Kuhn J, Gleissner T, Arduini-Schuster M C, et al. Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids, 1995, 186:291
    [71]
    Lee D, Stevens P C, Zeng S Q, et al. Thermal characterization of carbon-opacified silica aerogels. J Non-Cryst Solids, 1995, 186:285
    [72]
    Wang J, Kuhn J, Lu X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids, 1995, 186:296
    [76]
    Zhao J J, Duan Y Y, Wang X D, et al. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int J Therm Sci, 2013, 70:54
    [77]
    Wang X D, Sun D, Duan Y Y, et al. Radiative characteristics of opacifier-loaded silica aerogel composites. J Non-Cryst Solids, 2013, 375:31
    [78]
    Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int J Heat Mass Transfer, 2013, 58(1-2):540
    [80]
    Feng J P, Chen D P, Ni W, et al. Study of IR absorption properties of fumed silica-opacifier composites. J Non-Cryst Solids, 2010, 356(9-10):480
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (679) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频