<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 5
May  2017
Turn off MathJax
Article Contents
DOU Pei-qian, KOU Jue, SUN Chun-bao, LI Ming-ying. Transport of E.coli of reclaimed water in flotation system[J]. Chinese Journal of Engineering, 2017, 39(5): 669-675. doi: 10.13374/j.issn2095-9389.2017.05.004
Citation: DOU Pei-qian, KOU Jue, SUN Chun-bao, LI Ming-ying. Transport of E.coli of reclaimed water in flotation system[J]. Chinese Journal of Engineering, 2017, 39(5): 669-675. doi: 10.13374/j.issn2095-9389.2017.05.004

Transport of E.coli of reclaimed water in flotation system

doi: 10.13374/j.issn2095-9389.2017.05.004
  • Received Date: 2016-11-04
  • The transport of E.coli in reclaimed water in floatation system was investigated through simulate flotation, adsorption experiment and desorption experiments. The results show that E.coli in reclaimed water is rapidly adsorbed by ore particles, while tailing waste water can be reused to floatation safely. However, concentrates, middlings and tailings can pose health risks under certain exposure conditions. The transport of E.coli in flotation processes is dominated by the attachment of E.coli onto ore particles. Removal and adsorption rates decrease as the concentrations of E.coli increase. Meanwhile, E.coli adsorption on ore particles is sensitive to the changes of solution pH, and decreases as the solution pH increases. The attachment of E.coli onto mineral particles increases significantly at the presence of collector kerosene, PJ053, and the pH-adjusting agents CaO.

     

  • loading
  • [2]
    Castro-Hermida J A, García-Presedo I, Almeida A, et al. Contribution of treated wastewater to the contamination of recreational river areas with Cryptosporidium spp. and Giardia duodenalis. Water Res, 2008, 42(13):3528
    [3]
    Wéry N, Lhoutellier C, Ducray F, et al. Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res,2008, 42(1):53
    [5]
    Abit S M, Bolster C H, Cai P, et al. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environ Sci Technol, 2012, 46(15):8097
    [6]
    Sepehrnia N, Mahboubi A A, Mosaddeghi M R, et al. Escherichia coli transport through intact gypsiferous and calcareous soils during saturated and unsaturated flows. Geoderma, 2014, 217-218:83
    [7]
    Kim H N, Walker S L. Escherichia coli transport in porous media:influence of cell strain, solution chemistry, and temperature. Colloids Surf B:Biointerfaces, 2009, 71(1):160
    [8]
    Chrysikopoulos C V, Aravantinou A F. Virus attachment onto quartz sand:role of grain size and temperature. J Environ Chem Eng, 2014, 2(2):796
    [9]
    Cai P, Huang Q Y, Walker S L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system. Environ Sci Technol, 2013, 47(4):1896
    [10]
    Chen G X, Walker S L. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media. Environ Sci Technol, 2012, 46(16):8782
    [11]
    Syngouna V I, Chrysikopoulos C V. Transport of bio-colloids in water saturated columns packed with sand:effect of grain size and pore water velocity. J Contam Hydrol, 2011, 126(3):301
    [12]
    Lutterodt G, Foppen J W A, Uhlenbrook S. Transport of Escherichia coli strains isolated from natural spring water. J Contam Hydrol, 2012, 140-141:12
    [13]
    Ngwenya B T, Curry P, Kapetas L. Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles. J Contam Hydrol, 2015, 179:35
    [14]
    Yakirevich A, Pachepsky Y A, Guber A K, et al. Modeling transport of Escherichia coli in a creek during and after artificial high-flow events:three-year study and analysis. Water Res, 2013, 47(8):2676
    [15]
    Chrysikopoulos C V, Aravantinou A F. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures. J Hazard Mater, 2012, 233-234:148
    [16]
    Haznedaroglu B Z, Kim H N, Bradford S A, et al. Relative transport behavior of Escherichia coli O157:H7 and salmonella enteric serovar pullorum in packed bed column systems:influence of solution chemistry and cell concentration. Environ Sci Technol, 2009, 43(6):1838
    [17]
    Williams L B, Metge D W, Eberl D D, et al. What makes a natural clay antibacterial? Environ Sci Technol, 2011, 45(8):3768
    [18]
    Terada A, Okuyama K, Nishikawa M, et al. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnol Bioeng, 2012, 109(7):1745
    [19]
    Bellou M I, Syngouna V I, Tselepi M A, et al. Interaction of human adenoviruses and coliphages with kaolinite and bentonite. Sci Total Environ, 2015, 517:86
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (712) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频