<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
ZHAO Qiang-qiang, HOU Bao-lin. Parameter identification of a shell transfer arm using FDA and optimized ELM[J]. Chinese Journal of Engineering, 2017, 39(4): 611-618. doi: 10.13374/j.issn2095-9389.2017.04.017
Citation: ZHAO Qiang-qiang, HOU Bao-lin. Parameter identification of a shell transfer arm using FDA and optimized ELM[J]. Chinese Journal of Engineering, 2017, 39(4): 611-618. doi: 10.13374/j.issn2095-9389.2017.04.017

Parameter identification of a shell transfer arm using FDA and optimized ELM

doi: 10.13374/j.issn2095-9389.2017.04.017
  • Received Date: 2016-07-29
  • To identify the unmeasurable parameters of a shell transfer arm, a virtual prototype of the shell transfer arm was built, and the built virtual prototype is regard as the source of the sample data. Considering the continuity and smoothness properties of the sample data, features of the curves were extracted by functional data analysis and functional principal component analysis, and the features and unknown parameters were used to train the extreme learning machine (ELM). At the meantime, the weight connecting the input layer and hidden layer and the threshold of the hidden nodes were optimized by particle swarm optimization (PSO) to improve the identification accuracy and generalization performance of ELM. At last, the presented method was verified by simulation data and test data. The identification results of the simulation data show that the optimized ELM has higher identification accuracy and better generalization performance. Also, the presented method is proved to be feasible and effective by comparing the real angular velocity and the angular velocity from the virtual prototype with respect to the test data identification results.

     

  • loading
  • [3]
    Kayacan E, Kayacan E, Khanesar M A. Identification of nonlinear dynamic systems using type-2 fuzzy neural networks:a novel learning algorithm and a comparative study. IEEE Trans Ind Electron, 2015, 62(3):1716
    [4]
    Ugalde H M R, Carmona J C, Reyes J R, et al. Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing, 2015, 166:96
    [5]
    Ramsay J O. When the data are functions. Psychometrika, 1982, 47(4):379
    [6]
    Ramsay J O, Silverman B W. Functional Data Analysis. 2nd Ed. New York:Springer Science+Business Media, INC., 2005
    [7]
    Ramsay J O, Hooker G, Graves S. Functional Data Analysis with R and MATLAB. New York:Springer Science+Business Media, 2009
    [8]
    Ordóñez C, Sierra C, Albuquerque T, et al. Functional data analysis as a tool to correlate textural and geochemical data. Appl Math Comput, 2013, 223:476
    [9]
    Zipunnikov V, Caffo B, Yousem D M, et al. Functional principal component model for high-dimensional brain imaging. Neuro Image, 2011, 58(3):772
    [12]
    Boor C D. A Practical Guide to Splines. New York:SpringerVerlag, 2001
    [13]
    Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:theory and applications. Neurocomputing, 2006, 70(1):489
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (576) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频