<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
ZHAO Xiao-di, YUE Zhen-ming, GAO Jun, CHU Xing-rong. Springback prediction of magnesium alloy sheet with nonlinear combined hardening[J]. Chinese Journal of Engineering, 2017, 39(4): 550-556. doi: 10.13374/j.issn2095-9389.2017.04.010
Citation: ZHAO Xiao-di, YUE Zhen-ming, GAO Jun, CHU Xing-rong. Springback prediction of magnesium alloy sheet with nonlinear combined hardening[J]. Chinese Journal of Engineering, 2017, 39(4): 550-556. doi: 10.13374/j.issn2095-9389.2017.04.010

Springback prediction of magnesium alloy sheet with nonlinear combined hardening

doi: 10.13374/j.issn2095-9389.2017.04.010
  • Received Date: 2016-10-11
  • Springback is regarded as one of the main defects that occur in sheet-metal forming processes. Therefore, improving its prediction accuracy, especially under highly nonlinear conditions, is important for researchers. In this paper, constitutive equations that consider the isotropic hardening, kinematic hardening, and distortional hardening are proposed for magnesium alloy sheet. The work hardening and springback behaviors of 0.8-mm-thick AZ31B magnesium alloy sheet were investigated and simulated. The AZ31B specimen was subjected to a bending process after the pre-tension deformation, which aided in the observation of its springback behavior under nonlinear loading paths. Simulations were conducted using ABAQUS-Explicit (Vumat) and ABAQUS-Implicit (Umat). Comparisons between the experimental and numerical results demonstrate the strong influence of the kinematic hardening on the springback prediction of magnesium alloy sheet.

     

  • loading
  • [2]
    Zhang H, Yan Y, Fan J F, et al. Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression. Mater Sci Eng A, 2014, 618:540
    [3]
    Li B, McClelland Z, Horstemeyer S J, et al. Time dependent springback of a magnesium alloy. Mater Des, 2015, 66:575
    [5]
    Lee J Y, Lee M G, Barlat F, et al. Evaluation of constitutive models for springback prediction in U-draw/bending of DP and TRIP steel sheets. AIP Conf Proc, 2011, 1383:571
    [6]
    Lee M G, Kim C, Pavlina E J, et al. Advances in sheet forming-materials modeling, numerical simulation, and press technologies. J Manuf Sci Eng, 2011, 133(6):061001
    [7]
    Wagoner R H, Lim H, Lee M G. Advanced issues in springback. Int J Plast, 2013, 45:3
    [9]
    Prager W. A new method of analyzing stresses and strains in work-hardening plastic solids. J Appl Mech, 1956, 23:493
    [10]
    Ziegler H. A modification of Prager's hardening rule. Q Appl Math, 1959, 17(1):55
    [11]
    Sabourin F, Morestin F, Brunet M. Effect on non-linear kinematic hardening on spring-back analysis//Numisheet 2002. Corée du Sud, 2002
    [12]
    Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories. Int J Plast, 2008, 24(10):1642
    [13]
    Chaboche J L, Jung O. Application of a kinematic hardening viscoplasticity model with thresholds to the residual stress relaxation. Int J Plast, 1997, 13(10):785
    [14]
    Yoshida F, Uemori T. A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int J Plast, 2002, 18(5):661
    [15]
    Chung K, Lee M G, Kim D, et al. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part I:theory and formulation. Int J Plast, 2005, 21(5):861
    [16]
    Feigenbaum H P, Dafalias Y F. Directional distortional hardening at large plastic deformations. Int J Solids Struct, 2014, 51(23):3904
    [17]
    Pietryga M P, Vladimirov I N, Reese S. A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation. Mech Mater, 2012, 44:163
    [18]
    Borgqvist E, Lindstr m T, Tryding J, et al. Distortional hardening plasticity model for paperboard. Int J Solids Struct, 2014, 51(13):2411
    [19]
    Shi B D, Mosler J. On the macroscopic description of yield surface evolution by means of distortional hardening models:application to magnesium. Int J Plast, 2013, 44:1
    [20]
    Yue Z M. Ductile Damage Prediction in Sheet Metal Forming Processes[Dissertation]. Troyes:University of Technology of Troyes, 2014
    [21]
    Yue Z M, Badreddine H, Saanouni K, et al. On the distortion of yield surface under complex loading paths in sheet metal forming//IDDRG 2014 Conference. Paris, 2014
    [22]
    François M. A plasticity model with yield surface distortion for non proportional loading. Int J Plast, 2001, 17(5):703
    [23]
    Zang S L, Lee M G, Sun L, et al. Measurement of the Bauschinger behavior of sheet metals by three-point bending springback test with pre-strained strips. Int J Plast, 2014, 59:84
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (587) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频