<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, LIU Qing, XING Yun-ying, WANG Jing, WANG Xiu-yun. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
Citation: GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, LIU Qing, XING Yun-ying, WANG Jing, WANG Xiu-yun. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008

Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment

doi: 10.13374/j.issn2095-9389.2017.04.008
  • Received Date: 2016-07-22
  • The diffusion and accumulation behaviour of hydrogen in X70 pipeline steel were investigated via hydrogen permeation test, hydrogen diffusion simulation, and hydrogen content test technology in a simulated coal gas environment (4 MPa total pressure, 0.2 MPa hydrogen partial pressure). The mechanical properties of the X70 pipeline steel substrate and weld in a simulated coal gas environment were also analyzed through impact toughness test, crack propagation test, notch tensile test, and slow strain rate tensile test. Experimental results show that hydrogen absorbed on the X70 steel surface in a simulated coal gas environment spreads into the inside of the X70 steel, and the internal diffusion hydrogen mass fraction is 1.9×10-7 after reaching a steady state. Compared with the original performance in air, there is no decline in the impact performance, notched tensile and slow strain rate tensile strength, plasticity, and damage tolerance of the X70 pipeline steel substrate and weld in simulated coal gas. Results show that in a coal gas environment, X70 steel has a lower risk of hydrogen embrittlement.

     

  • loading
  • [3]
    Marchi C S, Somerday B P, Nibur K A, et al. Fracture and fatigue of commercial grade API pipeline steels in gaseous hydrogen//Proceedings of the ASME 2010 Pressure Vessels&Piping Division/K-PVP Conference. Bellevue, 2010:18
    [4]
    Cialone H J, Holbrook J H. Sensitivity of steels to degradation in gaseous hydrogen//Hydrogen Embrittlement:Prevention and Control. Los Angeles, 1988
    [5]
    Briottet L, Batisse R, Dinechin G D, et al. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. Int J Hydrogen Energy, 2012, 37(11):9423
    [6]
    Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros Sci, 2012, 59:1
    [7]
    Briottet L, Moro I, Lemoine P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations. Int J Hydrogen Energy, 2012, 37(22):17616
    [8]
    Amend W E, Quickel G T, Bruce W A, et al. Hydrogen assisted cracking failures of girth welds in oil and pipelines//Proceedings of the 20129th International Pipeline Conference. Calgary, 2012:24
    [12]
    Smialowski M. Hydrogen in Steel:Effect of Hydrogen on Iron and Steel during Production, Fabrication, and Use. New York:Pergamon Press, 1962
    [13]
    Somerday B P, Nibur K A, San Marchi C. Measurements of fatigue crack growth rates for steels in hydrogen containment components//Proceeding of the 3rd International Conference on Hydrogen Safety. Ajaccio, 2009
    [14]
    Tison P. Influence of the Hydrogen Behavior on Materials[Dissertation]. France:Pierre and Marie Curie University,1983(Tison P. Influence de L'hydrogène sur le Comportement des Matériaux[Dissertation]. France:Université Pierre et Marie Curie, 1983)
    [15]
    Chêne J, Brass A M. Hydrogen Transport by mobile dislocations in nickel base superalloy single crystals. Scripta Mater, 1999, 40(5):537
    [16]
    Moro I, Briottet L, Lemoine P, et al. Damage under high-pressure hydrogen environment of a high strength pipeline steel X80//Proceeding of the 2008 International Hydrogen Conference. Jackson Lake, 2008
    [17]
    Lynch S P. Progress towards understanding mechanisms of hydrogen embrittlement and stress corrosion cracking//Corrosion 2007. Nashville, 2007
    [18]
    Ren X C, Chu W Y, Su Y J, et al. Effects of atomic hydrogen and flaking on mechanical properties of wheel steel. Metall Mater Trans A, 2007, 38(5):1004
    [19]
    Yamasaki S, Takahashi T. Delayed fracture mechanism in high strength steels by acoustic emission source wave analysis. Tetsuto-Hagane, 1997, 83(7):460
    [20]
    Takagi S, Inoue T, Hara T, et al. Parameters for the evaluation of hydrogen embrittlement of high strength steel. Tetsu-toHagane, 2000, 86(10):689
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (925) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频