<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
ZHANG Si-yuan, BAO Yan-ping, ZHANG Chao-jie, LIN Lu. Prediction model of aluminum consumption with BP neural networks in IF steel production[J]. Chinese Journal of Engineering, 2017, 39(4): 511-519. doi: 10.13374/j.issn2095-9389.2017.04.005
Citation: ZHANG Si-yuan, BAO Yan-ping, ZHANG Chao-jie, LIN Lu. Prediction model of aluminum consumption with BP neural networks in IF steel production[J]. Chinese Journal of Engineering, 2017, 39(4): 511-519. doi: 10.13374/j.issn2095-9389.2017.04.005

Prediction model of aluminum consumption with BP neural networks in IF steel production

doi: 10.13374/j.issn2095-9389.2017.04.005
  • Received Date: 2016-07-25
  • To solve the high aluminum consumption problem in interstitial-free steel production in a steel plant, an aluminum consumption prediction model was established by mathematical statistics and BP neural networks. Compared with the multiple linear regression model, this model's result is more accurate. The influence of different smelting processes on aluminum consumption was analyzed, and the process parameters were optimized. The results show that the amount of aluminum consumption per ton of steel decreases 0.07 to 0.08 kg when the oxygen activity before RH or after decarbonization reduces by 0.005%. The effective utilization coefficient of aluminum-deoxidizing is from 70.31% to 80.35%; the aluminum consumption decreases about 0.1 kg when the temperature of steel before RH increases by 35 to 40℃. The heating utilization coefficient of aluminum thermal reaction is about 97.4%. When the blowing oxygen quantity is less than 100 m3 and greater than 100 m3, the ratio of oxygen reacting with aluminum is about 37.3% or about 74.6% respectively, and the aluminum consumption increases by 0.1 kg or 0.2 kg, respectively, with the blowing oxygen quantity increasing by 50 m3. After the process parameter optimization, the aluminum consumption decreases from 1.359 to 1.113 kg, which results in a decrease of 18.1%.

     

  • loading
  • [1]
    Longauerová M, Federová M, Longauer S, et al. Distribution of microalloying elements and impurities in surface zone of CC IF steel. Ironmaking Steelmaking, 2009,36(3):176
    [2]
    Yang W, Zhang L F, Wang X H, et al. Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment. ISIJ Int, 2013,53(8):1401
    [5]
    Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013,53(3):450
    [6]
    Zinngrebe E, Van Hoek C, Visser H, et al. Inclusion population evolution in Ti-alloyed Al-killed steel during secondary steelmaking process. ISIJ Int, 2012,52(1):52
    [7]
    Yang S F, Li J S, Wang Z F, et al. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment. Int J Miner Metall Mater, 2011,18(1):18
    [10]
    Guo Z H, Wu J, Lu H Y, et al. A case study on a hybrid wind speed forecasting method using BP neural network. Knowl Based Syst, 2011, 24(7):1048
    [11]
    Sadeghi B H M. A BP-neural network predictor model for plastic injection molding process. J Mater Process Technol, 2000, 103(3):411
    [12]
    Zhang L P, Wu K, Zhong Y F, et al. A new sub-pixel mapping algorithm based on a BP neural network with an observation model. Neurocomputing, 2008, 71(10):2046
    [14]
    Chaudhury A, Khatirkar R, Viswanathan N N, et al. Low silicon non-grain-oriented electrical steel:linking magnetic properties with metallurgical factors. J Magn Magn Mater, 2007, 313(1):21
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (731) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频