<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
XIA Yi-min, YANG Duan, HU Cheng-huan, TANG Pu-hua, BU Ying-yong. Resistance characteristics of gas-liquid two-phase flow in stick venturi scrubbers[J]. Chinese Journal of Engineering, 2017, 39(3): 449-455. doi: 10.13374/j.issn2095-9389.2017.03.018
Citation: XIA Yi-min, YANG Duan, HU Cheng-huan, TANG Pu-hua, BU Ying-yong. Resistance characteristics of gas-liquid two-phase flow in stick venturi scrubbers[J]. Chinese Journal of Engineering, 2017, 39(3): 449-455. doi: 10.13374/j.issn2095-9389.2017.03.018

Resistance characteristics of gas-liquid two-phase flow in stick venturi scrubbers

doi: 10.13374/j.issn2095-9389.2017.03.018
  • Received Date: 2016-06-02
  • In order to grasp the resistance characteristics of gas-liquid two-phase flow in stick venturi scrubbers, based on the multiphase flow theory, a three-dimensional CFD model was established. The impacts of stick spacing, air flow and liquid-gas ratio on the pressure loss were studied, and a resistance characteristic model was established. The relationship among stick spacing, air flow and liquid-gas ratio was obtained based on the resistance characteristic model. The results show that the pressure loss between the venturi bar layer and the lower cylinder increases in power exponent with the decrease of stick spacing and the increase of air flow, and it increases in linear with the increase of liquid-gas ratio. The pressure loss of the upper cylinder increases in quadratic with the increase of air flow. The max error between the resistance characteristic model and experimental data is 16. 88%, which verifies the model effectiveness.

     

  • loading
  • [1]
    Sun H, Azzopardi B J. Modelling gas-liquid flow in venturi scrubbers at high pressure. Process Saf Environ Prot, 2003, 81(4):250
    [2]
    Viswanathan S. Development of a pressure drop model for a variable throat venturi scrubber. Chem Eng J, 1998, 71(2):153
    [3]
    Silva A, Teixeira J C F, Teixeira S F C F. Experiments in a largescale venturi scrubber Part I:pressure drop. Chem Eng Process, 2009, 48(1):59
    [4]
    Nasseh S, Mohebbi A, Sarrafi A, et al. Estimation of pressure drop in venturi scrubbers based on annular two-phase flow model, artificial neural networks and genetic algorithm. Chem Eng J, 2009, 150(1):131
    [5]
    Pak S I, Chang K S. Performance estimation of a venturi scrubber using a computational model for capturing dust particles with liquid spray. J Hazard Mater, 2006, 138(3):560
    [6]
    Lu T, Wang K S. Numerical simulation of three-dimensional heat and mass transfer in spray cooling of converter gas in a venturi scrubber. Chin J Mech Eng, 2009, 22(5):745
    [7]
    Guerra V G, Béttega R, Goncçalves J A S, et al. Pressure drop and liquid distribution in a venturi scrubber:experimental data and CFD simulation. Ind Eng Chem Res, 2012, 51(23):8049
    [8]
    Sharifi A, Mohebbi A. A combined CFD modeling with population balance equation to predict pressure drop in venturi scrubbers. Res Chem Intermed, 2014, 40(3):1021
    [10]
    Toraño J, Torno S, Menéndez M, et al. Auxiliary ventilation in mining roadways driven with roadheaders:validated CFD modelling of dust behavior. Tunnelling Underground Space Technol, 2011, 26(1):201
    [12]
    Kurnia J C, Sasmito A P, Mujumdar A S. CFD simulation of methane dispersion and innovative methane management in underground mining faces. Appl Math Modell, 2014, 38(14):3467
    [13]
    Yakhot V, Orszag S A. Renormalization-group analysis of turbulence. Phys Rev Lett, 1986, 57(14):1722
    [14]
    Ahmadvand F, Talaie M R. CFD modeling of droplet dispersion in a venturi scrubber. Chem Eng J,2010,160(2):423
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (687) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频