<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
WANG Jia-mei, LU Hui, ZHANG Le-fu, MENG Fan-jiang, XU Xue-lian. Electrochemical corrosion behavior of 304 stainless steel in simulated pressurized water reactor primary water[J]. Chinese Journal of Engineering, 2017, 39(3): 399-406. doi: 10.13374/j.issn2095-9389.2017.03.012
Citation: WANG Jia-mei, LU Hui, ZHANG Le-fu, MENG Fan-jiang, XU Xue-lian. Electrochemical corrosion behavior of 304 stainless steel in simulated pressurized water reactor primary water[J]. Chinese Journal of Engineering, 2017, 39(3): 399-406. doi: 10.13374/j.issn2095-9389.2017.03.012

Electrochemical corrosion behavior of 304 stainless steel in simulated pressurized water reactor primary water

doi: 10.13374/j.issn2095-9389.2017.03.012
  • Received Date: 2016-05-09
  • The effects of chloride concentration and dissolved oxygen on the high-temperature electrochemical corrosion behaviors of 304 stainless steel sheets were investigated in simulated pressurized water reactor (PWR) primary water. The results of potentiodynamic polarization measurements reveal that the chloride ion mainly affects the second passivation region under high potential, but little effect under low potential. Oxide film chemical content analysis by X-ray photoelectron spectroscopy (XPS) shows that the second passivation properties are closely related to the Fe/Cr ratio of the oxide film. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) results show that, when the chloride ion concentration increases, the oxide film resistance decreases, the size of oxide particles and the gap between oxide particles on the outer layer increases and the corrosion resistance decreases. Besides, with the increase of dissolved oxygen, the corrosion potential increases, the passive current density decreases, the passive potential region shrinks, and the oxide film resistance gradually increases.

     

  • loading
  • [1]
    Da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment. Corros Sci, 1998, 40(2):447
    [2]
    Anoop M B, Rao K B, Lakshmanan N. Safety assessment of austenitic steel nuclear power plant pipelines against stress corrosion cracking in the presence of hybrid uncertainties. Int J Pressure Vessels Piping, 2008, 85(4):238
    [3]
    Li Y K, Lu S P, Li D Z, et al. Remaining life prediction of the core shroud due to stress corrosion cracking failure in BWRs using numerical simulations. J Nucl Sci Technol, 2015, 52(1):96
    [4]
    Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators:Part Ⅱ. Chemical composition and structure of tube surfaces. J Nucl Mat, 2006, 348(1):191
    [5]
    Bosch R W, Féron D, Celis J P. Electrochemistry in Light Water Reactors:Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues. Washington:CRC Press, 2007
    [6]
    Duan Z, Arjmand F, Zhang L, et al. Investigation of the corrosion behavior of 304L and 316L stainless steels at high-temperature borated and lithiated water. J Nucl Sci Technol, 2015, 53(9):1
    [7]
    Niedrach L W. Use of a high temperature pH sensor as a "Pseudo-Reference Electrode" in the monitoring of corrosion and redox potentials at 285℃. J Electrochem Soc, 1982, 129(7):1445
    [8]
    Lin C C, Smith F R, Ichikawa N, et al. Electrochemical potential measurements under simulated BWR water chemistry conditions. Corrosion, 1992, 48(1):16
    [9]
    Kim Y J. Analysis of oxide film formed on type 304 stainless steel in 288 C water containing oxygen, hydrogen, and hydrogen peroxide. Corrosion, 1999, 55(1):81
    [10]
    Pourbaix M. Altas of electrochemical equilibria in aqueous solutions. Houston:NACE, 1966
    [11]
    Beverskog B, Puigdomenech I. Pourbaix diagrams for the ternary system of iron-chromium-nickel. Corrosion, 1999, 55(11):1077
    [12]
    Chen C M, Aral K, Theus G J. Computer-calculated Potential pH Diagrams to 300℃. Volume 2:Handbook of Diagrams. EPRI NP-3137. Alliance:The Babcock & WilcoX Company, 1983
    [13]
    Tachibana M, Ishida K, Wada Y, et al. Determining factors for anodic polarization curves of typical structural materials of boiling water reactors in high temperature-high purity water. J Nucl Sci Technol, 2012, 49(2):253
    [14]
    Li X H, Wang J Q, Han E H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water. Corros Sci, 2013, 67:169
    [15]
    Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros Sci, 1998, 40(2):337
    [16]
    Ziemniak S E, Hanson M, Sander P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros Sci, 2008, 50(9):2465
    [17]
    Cristofaro N De, Piantini M, Zacchetti N. The influence of temperature on the passivation behaviour of a super duplex stainless steel in a boric-borate buffer solution. Corros Sci, 1997, 39(12):2181
    [18]
    Robertson J. The mechanism of high temperature aqueous corrosion of steel. Corros Sci, 1989, 29(11):1275
    [19]
    Kocijan A, Donik Č, Jenko M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions. Corros Sci, 2007, 49(5):2083
    [20]
    Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water. Corros Sci, 2012, 59:334
    [21]
    Huang J B, Wu X Q, Han E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments. Corros Sci, 2010, 52(10):3444
    [22]
    Feng Z C, Cheng X Q, Dong C F, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel. J Nucl Mater, 2010, 407(3):171
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (693) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频