Citation: | LIU Jian, LIU Jian-hua, WU Bo-wei, SHEN Shao-bo, YUAN Guo-hua, PENG Ling-zhi. Comparison on the solid-state desilication kinetics of silicon manganese powder by microwave heating and conventional heating[J]. Chinese Journal of Engineering, 2017, 39(2): 208-214. doi: 10.13374/j.issn2095-9389.2017.02.007 |
[6] |
Bykov Y V, Rybakov K I, Semenov V E. High-temperature microwave processing of materials. J Phys D, 2001, 34(13):R55
|
[8] |
Spasojević P, Jovanović J, Adnadjevic B. Unique effects of microwave heating on polymerization kinetics of poly (methyl methacrylate) composites. Mater Chem Phys, 2013, 141(2-3):882
|
[12] |
Zhou S C, Bai C G. Microwave direct synthesis and thermoelectric properties of Mg2Si by solid-state reaction. Trans Nonferrous Met Soc China, 2011, 21(8):1785
|
[13] |
Bednarz S, Bogdal D. The comparative study of the kinetics of knocvenagel condensation under microwave and conventional conditions//The Fifth International Electronic Conference on Synthetic Organic Chemistry (ECSOC-5). Basel, 2001:267
|
[14] |
de Castro E R, Mourao M, Jermolovicius L A, et al. Carbothermal reduction of iron ore applying microwave energy. Steel Res Int, 2012, 83(2):131
|
[18] |
Kyung W S, Jung K O. BaTiO3 particle formation mechanism under hydrothermal conditions. J Ceram Soc Jpn, 2000, 108(1260):691
|
[20] |
Hancock J D, Sharp J H. Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J Am Ceram Soc, 1972, 55(2):74
|