Citation: | LIU Xiao-hui, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming. Influence mechanism and calculation model of CPB rheological parameters[J]. Chinese Journal of Engineering, 2017, 39(2): 190-195. doi: 10.13374/j.issn2095-9389.2017.02.004 |
[1] |
Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem Concr Res, 2004, 34(11):1993
|
[6] |
Cheng D C H, Kruszewski A P, Senior J R, et al. The effect of particle size distribution on the rheology of an industrial suspension. J Mater Sci, 1990, 25(1):353
|
[7] |
He M Z, Wang Y M, Forssberg E. Slurry rheology in wet ultrafine grinding of industrial minerals:a review. Powder Technol, 2004, 147(1):94
|
[8] |
Kranenburg C. The fractal structure of cohesive sediment aggregates. Estuar Coast Shelf Sci, 1994, 39(6):451
|
[11] |
Wallevik J E. Rheological properties of cement paste:thixotropic behavior and structural breakdown. Cem Concr Res, 2009, 39(1):14
|
[13] |
Zhou J Z Q, Uhlherr P H T, Luo F T. Yield stress and maximum packing fraction of concentrated suspensions. Rheol Acta, 1995, 34(6):544
|
[15] |
Liddel P V, Boger D V. Yield stress measurements with the vane. J Non-Newtonian Fluid Mech, 1996, 63(2):235
|
[16] |
Saak A W, Jennings H M, Shah S P. The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem Concr Res, 2001, 31(2):205
|