<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 38 Issue 12
Jul.  2021
Turn off MathJax
Article Contents
TIAN Si-yang, XU Ke, GUO Hui-zhao. Application of local binary patterns to surface defect recognition of continuous casting slabs[J]. Chinese Journal of Engineering, 2016, 38(12): 1728-1733. doi: 10.13374/j.issn2095-9389.2016.12.010
Citation: TIAN Si-yang, XU Ke, GUO Hui-zhao. Application of local binary patterns to surface defect recognition of continuous casting slabs[J]. Chinese Journal of Engineering, 2016, 38(12): 1728-1733. doi: 10.13374/j.issn2095-9389.2016.12.010

Application of local binary patterns to surface defect recognition of continuous casting slabs

doi: 10.13374/j.issn2095-9389.2016.12.010
  • Received Date: 2016-03-15
    Available Online: 2021-07-28
  • To solve the detection problems of slab surface defects by conventional image recognition algorithms, this article introduces an improved multi-block local binary pattern algorithm which considers the image's pixels. In this algorithm, the original image is divided into several small regions, each small region is equally divided, and the average gray value is calculated. Then the local binary pattern algorithm is used. Five different kinds of 1697 samples gathered from a production line of slabs were examined, including cracks, scratches, indentations, dents, and no defect. The recognition rate reaches 94.9%, while the recognition rate of the traditional local binary pattern method is 89.1%. The results show that the proposed algorithm has the characteristics of high precision, better robustness and noise immunity.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (221) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频