<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 38 Issue 6
Jul.  2021
Turn off MathJax
Article Contents
YANG Dao, FU Dong-mei. Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model[J]. Chinese Journal of Engineering, 2016, 38(6): 876-885. doi: 10.13374/j.issn2095-9389.2016.06.019
Citation: YANG Dao, FU Dong-mei. Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model[J]. Chinese Journal of Engineering, 2016, 38(6): 876-885. doi: 10.13374/j.issn2095-9389.2016.06.019

Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model

doi: 10.13374/j.issn2095-9389.2016.06.019
  • Received Date: 2015-05-28
    Available Online: 2021-07-22
  • Specific to the problem of infrared target extraction with blurred edges,this article introduces an extraction method based on a manifold regularized multiple kernel semi-supervised classification model.Firstly,the maximum variance of inter-class(OTSU) method is used to compute the initial segmentation threshold,and the certain target and background areas and the uncertain blurred edge area are determined.Then,local space sets of pixels are constructed in each area,the multiple-kernel functions are used to map the grayscale mean and variance in local space,and the location information feature in local space is obtained by manifold regularization(MR).On the basis of features,a semi-supervised classification model is established to classify the local space sets of pixels in the blurred edge area.Finally,the optimal segmentation threshold is computed.Experiments with comparisons show that this method is efficient and less in time-consuming.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (130) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频