<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 38 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
WANG Yong-sheng, ZHENG Xue-feng. An ensemble classifier based on attribute measurement of rough sets[J]. Chinese Journal of Engineering, 2016, 38(3): 425-431. doi: 10.13374/j.issn2095-9389.2016.03.018
Citation: WANG Yong-sheng, ZHENG Xue-feng. An ensemble classifier based on attribute measurement of rough sets[J]. Chinese Journal of Engineering, 2016, 38(3): 425-431. doi: 10.13374/j.issn2095-9389.2016.03.018

An ensemble classifier based on attribute measurement of rough sets

doi: 10.13374/j.issn2095-9389.2016.03.018
  • Received Date: 2015-08-03
    Available Online: 2021-07-10
  • From the viewpoint of the attribute measurement of rough sets,a new attribute measurement based on the hybrid metric mechanism was provided to accurately evaluate the significance of attributes. This proposed attribute measurement analyzes the significance of attributes from different levels of information granularity. In addition,a parameter weighting factor was introduced to the attribute measurement according to the characteristics of data distribution. On this basis,an ensemble classifier was constructed based on the proposed attribute measurement mechanism in rough sets. Experimental results and comparative analysis show that the proposed method can effectively reduce the attribute dimension of data. Compared with the single attribute measurement,the proposed method has a better classification performance.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (223) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频