<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 37 Issue 9
Jul.  2021
Turn off MathJax
Article Contents
WANG Zhi-ming. Noise variance estimation based on image segmentation[J]. Chinese Journal of Engineering, 2015, 37(9): 1218-1224. doi: 10.13374/j.issn2095-9389.2015.09.016
Citation: WANG Zhi-ming. Noise variance estimation based on image segmentation[J]. Chinese Journal of Engineering, 2015, 37(9): 1218-1224. doi: 10.13374/j.issn2095-9389.2015.09.016

Noise variance estimation based on image segmentation

doi: 10.13374/j.issn2095-9389.2015.09.016
  • Received Date: 2014-06-11
    Available Online: 2021-07-10
  • A new two-step noise variance estimation algorithm was proposed based on image segmentation. In the first step, a noisy image was smoothed and was segmented by the statistical region merge (SRM) algorithm, then the variance of each region was computed, and some regions were selected based on the statistical rule to estimate the noise variance. In the second step, the parame-ters of filtering, segmentation and estimation were revised according to the estimated noise variance, and a new cycle of image filte-ring, segmentation and estimation was performed to obtain more accurate estimation. Experimental results on large numbers of images and various noises show that the proposed algorithm can estimate the noise variance quickly and accurately.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (290) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频