<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 37 Issue 2
Jul.  2021
Turn off MathJax
Article Contents
WANG Guo-xia, LIU He-ping, LI Qing. Gravitation-based personalized recommendation algorithm[J]. Chinese Journal of Engineering, 2015, 37(2): 255-259. doi: 10.13374/j.issn2095-9389.2015.02.019
Citation: WANG Guo-xia, LIU He-ping, LI Qing. Gravitation-based personalized recommendation algorithm[J]. Chinese Journal of Engineering, 2015, 37(2): 255-259. doi: 10.13374/j.issn2095-9389.2015.02.019

Gravitation-based personalized recommendation algorithm

doi: 10.13374/j.issn2095-9389.2015.02.019
  • Received Date: 2013-12-23
    Available Online: 2021-07-10
  • A recommendation algorithm is proposed by introducing the universal law of gravitation into a recommendation system. This new algorithm is named as the gravitation-based personalized recommendation (GBPR) algorithm. In the algorithm, social tags used by users are regarded as particles that made up of their preference objects, social tags marking on items are considered as parti-cles that made up of item objects, and the user preference objects and item objects are taken as a user preference object model and an item object model, respectively. Gravitation exists between the user preference objects and item objects, and its strength obeys the universal law of gravitation. The strength of gravitation between the user preference objects and the item objects is computed, and it is regarded as their similarity. The bigger the strength is, the more similar they are, and the corresponding item objects are more proba-ble to be liked by users. Experimental results show that the proposed algorithm can get good performance.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (150) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频