<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 36 Issue 12
Jul.  2021
Turn off MathJax
Article Contents
QUAN Li-ping, LI Xiao-li, WANG Qiao-zhi. Multiresolution wavelet extreme learning machine[J]. Chinese Journal of Engineering, 2014, 36(12): 1712-1719. doi: 10.13374/j.issn1001-053x.2014.12.019
Citation: QUAN Li-ping, LI Xiao-li, WANG Qiao-zhi. Multiresolution wavelet extreme learning machine[J]. Chinese Journal of Engineering, 2014, 36(12): 1712-1719. doi: 10.13374/j.issn1001-053x.2014.12.019

Multiresolution wavelet extreme learning machine

doi: 10.13374/j.issn1001-053x.2014.12.019
  • Received Date: 2014-09-09
    Available Online: 2021-07-19
  • An extrme learning machine(ELM) algorithm based on wavelet transform was designed for a class of indentification and regression problem with inhomogeneity in a space. From the standpoint of multiresolution analysis,a set of compactly supported orthogonal wavelets was constructed as the hidden layer activation function,and the output layer weight of the network was trained by an error minimized extreme learning machine. This method avoided retraining the output layer parameter as adding a subnetwork with higher resolution. The wavelet ELM was then extended into a two-dimensional space using the tensor product of a scaling function. To hurdle high-dimensionality issues,ridgelet transform based on ELM was obtained,whose scaling,direction,and position parameters were determined by optimization methods. Simulation results on functions with singularity confirm that the wavelet ELM can approch the target better. When being tested on some real benchmark problems,the ridgelet ELM demonstrates better training and testing accuracy on most cases.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (182) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频