<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 35 Issue 9
Jul.  2021
Turn off MathJax
Article Contents
WU Di, LI Su-jian, LI Hai-tao. Elite-recombination-based hybrid multi-objective evolutionary algorithm[J]. Chinese Journal of Engineering, 2013, 35(9): 1207-1214. doi: 10.13374/j.issn1001-053x.2013.09.001
Citation: WU Di, LI Su-jian, LI Hai-tao. Elite-recombination-based hybrid multi-objective evolutionary algorithm[J]. Chinese Journal of Engineering, 2013, 35(9): 1207-1214. doi: 10.13374/j.issn1001-053x.2013.09.001

Elite-recombination-based hybrid multi-objective evolutionary algorithm

doi: 10.13374/j.issn1001-053x.2013.09.001
  • Received Date: 2012-08-04
  • Considering the bad efficiency and convergence of multi-objective evolutionary algorithms, this article introduces an elite-recombination-based hybrid multi-objective evolutionary algorithm (ERHMEA). In the algorithm, the multi-objective optimization problem was decomposed into multiple single-objective optimization problems and generated the only elite solution with the genetic-algorithm-based elite recombination strategy. Strategies such as regional population initialization, improved local search and selection mechanisms, optimized subgroup based packet crossover and adaptive multiple mutation operator, and chaos optimization based restart mechanism effectively overcome the inherent defects of elite preservation, as well as the multi-objective evolutionary algorithm (MEA) existing target space solution crowding, slow convergence, prematurity, and other issues. Multi-objective test functions analysis and experimental simulation prove the effectiveness and superiority of the proposed algorithm.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (270) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频