<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 35 Issue 8
Jul.  2021
Turn off MathJax
Article Contents
WU Sen, WANG Qiang, JIANG Min, WEI Qing. Clustering algorithm of categorical data in consideration of sorting by weight[J]. Chinese Journal of Engineering, 2013, 35(8): 1093-1098. doi: 10.13374/j.issn1001-053x.2013.08.016
Citation: WU Sen, WANG Qiang, JIANG Min, WEI Qing. Clustering algorithm of categorical data in consideration of sorting by weight[J]. Chinese Journal of Engineering, 2013, 35(8): 1093-1098. doi: 10.13374/j.issn1001-053x.2013.08.016

Clustering algorithm of categorical data in consideration of sorting by weight

doi: 10.13374/j.issn1001-053x.2013.08.016
  • Received Date: 2012-09-03
  • Aimed at solving the problem that part of clustering algorithms are sensitive to the data input order, a non-interference sequence index was defined, and an approach applying the non-interference sequence was proposed to sort categorical data by weight. Based on this approach, a new clustering algorithm considering sorting by weight (CABOSFV_CSW) was presented to improve CABOSFV_C, which is an efficient clustering algorithm for categorical data but sensitive to the data input order. This approach eliminates sensitivity to the data input order. UCI benchmark data sets were used to compare the proposed CABOSFV_CSW algorithm with traditional CABOSFV_C algorithm and other algorithms sensitive to the data input order. Empirical tests show that the new CABOSFV_CSW clustering algorithm for categorical data improves the accuracy and increases the stability effectively.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (264) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频