<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 34 Issue 11
Jul.  2021
Turn off MathJax
Article Contents
LIANG Hui, TONG Chao-nan. Online data-driven modeling for strip thickness based on subtractive clustering[J]. Chinese Journal of Engineering, 2012, 34(11): 1338-1345. doi: 10.13374/j.issn1001-053x.2012.11.010
Citation: LIANG Hui, TONG Chao-nan. Online data-driven modeling for strip thickness based on subtractive clustering[J]. Chinese Journal of Engineering, 2012, 34(11): 1338-1345. doi: 10.13374/j.issn1001-053x.2012.11.010

Online data-driven modeling for strip thickness based on subtractive clustering

doi: 10.13374/j.issn1001-053x.2012.11.010
  • Received Date: 2011-10-19
    Available Online: 2021-07-30
  • In hot rolling, actual production data were not used to improve the thickness quality of products. For this phenomenon, an online data-driven modeling algorithm was proposed for strip thickness control based on subtractive clustering. Firstly, the input space is divided into several clusters by subtractive clustering, in each cluster a sub-model is built by a least square support vector machine (LS-SVM), and an offline model is obtained by weighting the outputs of these sub-models. Then, when the online data constantly increase, the clustering subsets are adjusted on-line by a subtractive clustering algorithm, and the parameters of the sub-models are determined using the recursive algorithm of the least squares support vector machine. The predictive outputs of the sub-models are the final outputs. Experimental results demonstrate that the method has good prediction accuracy and online learning ability.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (166) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频