<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 34 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
AI Li-xiang, WANG Hong-bing, XU An-jun, DU Xi. EAF carrying energy optimization based on the genetic algorithm[J]. Chinese Journal of Engineering, 2012, 34(4): 450-456. doi: 10.13374/j.issn1001-053x.2012.04.014
Citation: AI Li-xiang, WANG Hong-bing, XU An-jun, DU Xi. EAF carrying energy optimization based on the genetic algorithm[J]. Chinese Journal of Engineering, 2012, 34(4): 450-456. doi: 10.13374/j.issn1001-053x.2012.04.014

EAF carrying energy optimization based on the genetic algorithm

doi: 10.13374/j.issn1001-053x.2012.04.014
  • Received Date: 2011-02-22
    Available Online: 2021-07-30
  • A carrying energy optimization model of an electric arc furnace(EAF) was proposed by introducing an energy carrier and considering the factors of EAF charging structures,oxygen supply,carbon addition and power supply.Due to the complexity of its constraints,the model could not be solved by linear programming.In this paper the model was solved by a genetic algorithm.The energy values of BH1H,BHDDQ and SUS304 steels were calculated by the model.The results showed that under the premise of ensuring the indicators of EAF molten steel such as chemical composition,temperature and slag basicity to meet the requirements,the energy values of the molten steel in each furnace were reduced by 22.8%,21.4% and 23.6% for BH1H,BHDDQ and SUS304 steels,respectively.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (169) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频