<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 34 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
WANG Hong-bing, AI Li-xiang, XU An-jun, TIAN Nai-yuan, HOU Zhi-chang, ZHOU Zheng-wen. Prediction on the starting temperature of molten steel in second refining by using case-based reasoning[J]. Chinese Journal of Engineering, 2012, 34(3): 264-269. doi: 10.13374/j.issn1001-053x.2012.03.012
Citation: WANG Hong-bing, AI Li-xiang, XU An-jun, TIAN Nai-yuan, HOU Zhi-chang, ZHOU Zheng-wen. Prediction on the starting temperature of molten steel in second refining by using case-based reasoning[J]. Chinese Journal of Engineering, 2012, 34(3): 264-269. doi: 10.13374/j.issn1001-053x.2012.03.012

Prediction on the starting temperature of molten steel in second refining by using case-based reasoning

doi: 10.13374/j.issn1001-053x.2012.03.012
  • Received Date: 2011-02-02
    Available Online: 2021-07-30
  • Case-based reasoning was used to predict the starting temperature of molten steel in second refining so as to avoid the long training time of a BP (back propagation) neural network. Analytic hierarchy process (AHP) was applied to determine the weights of factors influencing the starting temperature. Grey relational degree was adopted to compute the similarity between cases. Thus the shortcoming of difficulty in obtaining accurate cases with incomplete information is conquered. A four-step search method, including class search, rough search, delicate search, and optimized search, was provided, by which the search time decreases greatly. Experimental results using both artificial neural networks and case-based reasoning were compared. It is shown that case-based reasoning has got a higher hit rate and a shorter response time than artificial neural networks.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (164) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频