<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 32 Issue 10
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Hong-xiang, HUANG Zhong-guo, YUAN Qing-hua, PANG Jian-ping. Simulation studies on the flow field of sintering flue gas during vortex collision desulfurization[J]. Chinese Journal of Engineering, 2010, 32(10): 1333-1339. doi: 10.13374/j.issn1001-053x.2010.10.016
Citation: ZHANG Hong-xiang, HUANG Zhong-guo, YUAN Qing-hua, PANG Jian-ping. Simulation studies on the flow field of sintering flue gas during vortex collision desulfurization[J]. Chinese Journal of Engineering, 2010, 32(10): 1333-1339. doi: 10.13374/j.issn1001-053x.2010.10.016

Simulation studies on the flow field of sintering flue gas during vortex collision desulfurization

doi: 10.13374/j.issn1001-053x.2010.10.016
  • Received Date: 2009-12-09
  • Fluent software was used to numerically simulate the functions of three key components (gas distributed ring, cooling pre-processor, and vortex collision component) during vortex collision desulfurization. The influence rules of the three components on the flow field of sintering flue gas were fit with MATLAB software, It is shown that under the optimal distribution of flue gas the installation location of the gas distributed ring is linear with the ring width. The greater the water-jet velocity from the cooling pre-processor, the lower the temperature of flue gas is. When the water-jet velocity exceeds 30 m·s-1, the temperature of flue gas does not change significantly with increasing water-jet velocity; as a result, the best range of water-jet velocity is 25 to 30 m·s-1. The pressure loss of flue gas increases with the tangential velocity of the vortex collision component increasing. When the tangential velocity is over 20 m·s-1, the pressure loss rises sharply. The tangential velocity of the vortex collision component should be controlled at about 20 m·s-1, indicating that the rotational speed of the tray is about 85 r·min-1.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (187) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频