<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 32 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
LI Qing, XU Yin-mei, ZHANG De-zheng, YIN Yi-xin. Global path planning method for mobile robots based on the particle swarm algorithm[J]. Chinese Journal of Engineering, 2010, 32(3): 397-402. doi: 10.13374/j.issn1001-053x.2010.03.024
Citation: LI Qing, XU Yin-mei, ZHANG De-zheng, YIN Yi-xin. Global path planning method for mobile robots based on the particle swarm algorithm[J]. Chinese Journal of Engineering, 2010, 32(3): 397-402. doi: 10.13374/j.issn1001-053x.2010.03.024

Global path planning method for mobile robots based on the particle swarm algorithm

doi: 10.13374/j.issn1001-053x.2010.03.024
  • Received Date: 2009-01-20
  • A global path planning method for mobile robots based on the guaranteed convergence particle swarm optimization algorithm is presented.A solution is provided for mobile robots to find the shortest path avoiding obstacles in a limited period of time.Firstly,an environmental map is set up and a path connecting the start point and the end point is coded as a particle.Then,a particular active region for particles is mapped out according to the location of obstacles.The initial particle population is generated within this region and particles fly in the active region to search for the optimum path.In the search process,both the acceleration coefficient and inertia weight of the particle swarm optimization algorithm are self-adaptively adjusted along with iteration processes.It is proved that the algorithm can plan out a simple and safe optimum path connecting the start point and the end point by simulation experiments.Comparative studies with a recently reported method show that the proposed algorithm has advantages such as faster search speed and higher search quality.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (253) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频