<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 32 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
LEI Xue-mei, WANG Da-liang, TIAN Zhong-gui-qiu, CENG Guang-ping. Japanese word sense disambiguation system based on deep feature extraction[J]. Chinese Journal of Engineering, 2010, 32(2): 263-269. doi: 10.13374/j.issn1001-053x.2010.02.024
Citation: LEI Xue-mei, WANG Da-liang, TIAN Zhong-gui-qiu, CENG Guang-ping. Japanese word sense disambiguation system based on deep feature extraction[J]. Chinese Journal of Engineering, 2010, 32(2): 263-269. doi: 10.13374/j.issn1001-053x.2010.02.024

Japanese word sense disambiguation system based on deep feature extraction

doi: 10.13374/j.issn1001-053x.2010.02.024
  • Received Date: 2009-05-01
  • The features of word sense disambiguation (WSD) come from the context. Japanese has linguistic features of both Chinese and English at the same time, thus the feature extraction of Japanese is more complicated. Considering Japanese features, based on the proposed WSD logic model and applying the characteristics of information integration of the maximum entropy model, WSD was solved by the deep feature extraction method, introducing semantics and syntactics features. Meanwhile, for preventing the skewed assignment of lonely word sense, the word sense tagging of word sequences was completed with the BeamSearch algorithm. Experiment results show that compared with WSD methods which only focus on the surface lexical features, the disambiguation accuracy of the Japanese WSD system proposed in this paper increases 2% to 3%, and the WSD accuracy of verbs improves 5%.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (144) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频