<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 31 Issue 12
Aug.  2021
Turn off MathJax
Article Contents
QU Liang-shan, LI Xiao-gang, DU Cui-wei, HE Shu-quan, LIU Zhi-yong. Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network[J]. Chinese Journal of Engineering, 2009, 31(12): 1569-1575. doi: 10.13374/j.issn1001-053x.2009.12.008
Citation: QU Liang-shan, LI Xiao-gang, DU Cui-wei, HE Shu-quan, LIU Zhi-yong. Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network[J]. Chinese Journal of Engineering, 2009, 31(12): 1569-1575. doi: 10.13374/j.issn1001-053x.2009.12.008

Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network

doi: 10.13374/j.issn1001-053x.2009.12.008
  • Received Date: 2009-04-10
    Available Online: 2021-08-09
  • A short-term prediction model for soil corrosion of carbon steel in the regional soil environment of Daqing area was established by measuring the physical and chemical properties of soil in this area, the short-term corrosion data of carbon steel and analyzing the logical relationship among mass transfer processes. The reasonableness of the corrosion model was verified by using BP artificial neural network to learn, train, simulate and compare to the corrosion test results of buried carbon steel samples. The results show that water content, air content, pH, Cl- content, SO42- content and total dissolved salts are the six key factors on soil corrosion of carbon steel in the local soil environment. It is indicated that a stable forecasting model with good generalization ability can be built based on BP artificial neural network through Matlab platform software, by continuous accumulation of soil corrosion information and after adequate training. The model predicts the corrosion rates of carbon steel in Daqing soil accurately.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (301) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频