<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 30 Issue 10
Aug.  2021
Turn off MathJax
Article Contents
WANG Jianguo, YANG Jianhong, YUN Haibin, XU Jinwu. Improved particle swarm optimized back propagation neural network and its application to production quality modeling[J]. Chinese Journal of Engineering, 2008, 30(10): 1188-1193. doi: 10.13374/j.issn1001-053x.2008.10.023
Citation: WANG Jianguo, YANG Jianhong, YUN Haibin, XU Jinwu. Improved particle swarm optimized back propagation neural network and its application to production quality modeling[J]. Chinese Journal of Engineering, 2008, 30(10): 1188-1193. doi: 10.13374/j.issn1001-053x.2008.10.023

Improved particle swarm optimized back propagation neural network and its application to production quality modeling

doi: 10.13374/j.issn1001-053x.2008.10.023
  • Received Date: 2008-05-10
  • Rev Recd Date: 2008-07-31
  • Available Online: 2021-08-06
  • In order to solve the difficulties of tendency to local optima in conditional optimization algorithms for back propagation neural network (BPNN), with improvements in the strategy for updating the particle's velocity and location, this paper proposed a new back propagation neural network modeling method based on improved particle swarm optimization. The data from sinc function, Boston housing problem and the real strip hot-dip galvanizing production in an iron and steel corporation were used for verification. The results show that, compared with the standard BPNN and support vector machine algorithms, the proposed method can effectively help the BPNN to get a better regression precision and prediction performance.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (169) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频