<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 30 Issue 6
Aug.  2021
Turn off MathJax
Article Contents
WANG Shaojie, CHEN Hongsong, ZHENG Xuefeng, CHU Lijun, YU Zhen, WANG Xiongbin. An improved DyTrust trust model[J]. Chinese Journal of Engineering, 2008, 30(6): 685-689. doi: 10.13374/j.issn1001-053x.2008.06.016
Citation: WANG Shaojie, CHEN Hongsong, ZHENG Xuefeng, CHU Lijun, YU Zhen, WANG Xiongbin. An improved DyTrust trust model[J]. Chinese Journal of Engineering, 2008, 30(6): 685-689. doi: 10.13374/j.issn1001-053x.2008.06.016

An improved DyTrust trust model

doi: 10.13374/j.issn1001-053x.2008.06.016
  • Received Date: 2007-04-12
  • Rev Recd Date: 2007-05-10
  • Available Online: 2021-08-06
  • To improve the trust evaluation accuracy of the DyTrust model, solve the problem of rough granularity of the trust model, and deal with the trust evaluation problems caused by individual experience, based on the DyTrust model, an improved algorithm of trust evaluation was presented after using an experiential factor and the particular services of nodes. Compared with the DyTrust model, the improved model has the advantages of crisp granularity, high accuracy, reflecting the personalization of nodes, enhancing the feedback trust value, and high scalability.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (199) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频