<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 30 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Lijun, XU Jinwu, YANG Jianhong, YANG Debin. Adaptive multiscale morphology analysis and its application in fault diagnosis of bearings[J]. Chinese Journal of Engineering, 2008, 30(4): 441-445. doi: 10.13374/j.issn1001-053x.2008.04.047
Citation: ZHANG Lijun, XU Jinwu, YANG Jianhong, YANG Debin. Adaptive multiscale morphology analysis and its application in fault diagnosis of bearings[J]. Chinese Journal of Engineering, 2008, 30(4): 441-445. doi: 10.13374/j.issn1001-053x.2008.04.047

Adaptive multiscale morphology analysis and its application in fault diagnosis of bearings

doi: 10.13374/j.issn1001-053x.2008.04.047
  • Received Date: 2006-12-14
  • Rev Recd Date: 2007-03-05
  • Available Online: 2021-08-06
  • In order to solve the problem of impulsive features extraction from strong noise background, an adaptive multiscale morphology analysis (AMMA) algorithm was proposed. Corresponding to the analysis signal, the length scale and height scale were defined separately to select structuring elements for multiscale morphology analysis. An adaptive algorithm based on the information of local peaks of the signal was discussed. Numerical simulation experiments show that the proposed AMMA algorithm is better than the single-scale morphology analysis algorithm for extracting morphological features, and avoids the drawbacks of the ambiguity of selecting structuring elements and the dependence of empirical rules. The proposed AMMA algorithm is also examined in morphology analysis of the experimental signal measured from a bearing with faults. The results confirm that the proposed AMMA algorithm is able to extract various features clearly.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (207) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频