<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 29 Issue 6
Aug.  2021
Turn off MathJax
Article Contents
YAO Lin, YANG Jianhong, XU Jinwu, WANG Zhi. Quality monitoring method of strip hot-dip galvanizing based on partial least squares regression[J]. Chinese Journal of Engineering, 2007, 29(6): 627-631. doi: 10.13374/j.issn1001-053x.2007.06.040
Citation: YAO Lin, YANG Jianhong, XU Jinwu, WANG Zhi. Quality monitoring method of strip hot-dip galvanizing based on partial least squares regression[J]. Chinese Journal of Engineering, 2007, 29(6): 627-631. doi: 10.13374/j.issn1001-053x.2007.06.040

Quality monitoring method of strip hot-dip galvanizing based on partial least squares regression

doi: 10.13374/j.issn1001-053x.2007.06.040
  • Received Date: 2006-10-31
  • Rev Recd Date: 2007-01-25
  • Available Online: 2021-08-16
  • A quality monitoring method for strip hot-dip galvanizing based on partial least square regression was proposed. Taking the quality monitoring of mechanical properties and zinc coating mass in strip hot-dip galvanizing as the investigated subject, a regression model between process parameters and quality results was constructed through partial least square method. With the regression model, the capability of production process control was analyzed and a production quality prediction method was presented, Real field data from strip hot-dip galvanizing production in Angang Steel Company Limited were used for validation, The results show that partial least square regression has a better predicting precision than traditional multiple linear regression, and that the zinc coating mass prediction model based on partial least square regression has a relative prediction error of 5.93%.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (171) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频