<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 29 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
YANG Guoliang, WANG Zhiliang, LIU Jiwei, WANG Guojiang, CHEN Fengjun. HMM training algorithm based improved MMI and its application in facial expression recognition[J]. Chinese Journal of Engineering, 2007, 29(4): 432-437. doi: 10.13374/j.issn1001-053x.2007.04.014
Citation: YANG Guoliang, WANG Zhiliang, LIU Jiwei, WANG Guojiang, CHEN Fengjun. HMM training algorithm based improved MMI and its application in facial expression recognition[J]. Chinese Journal of Engineering, 2007, 29(4): 432-437. doi: 10.13374/j.issn1001-053x.2007.04.014

HMM training algorithm based improved MMI and its application in facial expression recognition

doi: 10.13374/j.issn1001-053x.2007.04.014
  • Received Date: 2006-01-04
  • Rev Recd Date: 2006-04-25
  • Available Online: 2021-08-16
  • A new approach for hidden Markov model (HMM) training based on an improved maximum mutual information (MMI) criterion was presented and HMM parameter adjustment rules were induced. By adopting a more realistic MMI definition, discriminative information contained in the training data could be used to improve the performance of HMM and this method was also used in facial expression recognition. Facial expression feature vector flows were extracted by using the improved optical flow algorithm, and a hybrid classifier based on the improved HMM and BP neural network was designed. Experimental results show that the new method provides satisfactory recognition performance and the method is powerful for HMM parameter estimation.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (207) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频