<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 28 Issue 11
Aug.  2021
Turn off MathJax
Article Contents
LI Qing, XIE Sijiang, TONG Xinhai, WANG Zhiliang. A self-adaptive genetic algorithm for the shortest path planning of vehicles and its comparison with Dijkstra and A* algorithms[J]. Chinese Journal of Engineering, 2006, 28(11): 1082-1086. doi: 10.13374/j.issn1001-053x.2006.11.018
Citation: LI Qing, XIE Sijiang, TONG Xinhai, WANG Zhiliang. A self-adaptive genetic algorithm for the shortest path planning of vehicles and its comparison with Dijkstra and A* algorithms[J]. Chinese Journal of Engineering, 2006, 28(11): 1082-1086. doi: 10.13374/j.issn1001-053x.2006.11.018

A self-adaptive genetic algorithm for the shortest path planning of vehicles and its comparison with Dijkstra and A* algorithms

doi: 10.13374/j.issn1001-053x.2006.11.018
  • Received Date: 2005-09-01
  • Rev Recd Date: 2006-06-22
  • Available Online: 2021-08-24
  • A self-adaptive genetic algorithm was proposed and successfully applied for the shortest path planning of vehicles. The encoding scheme, crossover and mutation operators were specifically designed for shortest path planning problems in the proposed genetic algorithm. A new online self-adaptive adjustment strategy for crossover and mutation probabilities was also investigated in order to improve the search speed and search quality of genetic algorithm. The comparison of the proposed genetic algorithm with Dijkstra and A* algorithms was carried out. Simulation results under 5 different circumstances show that the proposed genetic algorithm can decrease the searching time for shortest path compared with Dijkstra algorithm and obtain more shortest paths than A* algorithm.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (249) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频