<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 28 Issue 10
Aug.  2021
Turn off MathJax
Article Contents
HONG Lu, MU Zhichun. Application of immune genetic algorithm in BP neural networks[J]. Chinese Journal of Engineering, 2006, 28(10): 997-1000. doi: 10.13374/j.issn1001-053x.2006.10.041
Citation: HONG Lu, MU Zhichun. Application of immune genetic algorithm in BP neural networks[J]. Chinese Journal of Engineering, 2006, 28(10): 997-1000. doi: 10.13374/j.issn1001-053x.2006.10.041

Application of immune genetic algorithm in BP neural networks

doi: 10.13374/j.issn1001-053x.2006.10.041
  • Received Date: 2005-08-22
  • Rev Recd Date: 2006-03-20
  • Available Online: 2021-08-24
  • A new method of designing BP neural networks based on immune genetic algorithm (IGA) was proposed. The mechanisms of diversity maintaining and antibody density regulation exhibited in a biological immune system were introduced into IGA based on genetic algorithm (GA). The proposed algorithm overcame the problems of GA on search efficiency, individual diversity and premature, and enhanced the convergent performance effectively. In order to solve the problem of random initial weights, simulated annealing algorithm for diversity was used to initialize weight vectors, and the detailed design steps of the algorithm were given. Simulated results show that the BP neural networks designed by IGA have better performance in Convergent speed and global convergence compared with hybrid genetic algorithm.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (156) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频