<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 27 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
GAO Yanyu, YANG Yang, CHEN Fei. Off-line handwritten Chinese character recognition based on fusion features and LS-SVM[J]. Chinese Journal of Engineering, 2005, 27(4): 509-512. doi: 10.13374/j.issn1001-053x.2005.04.030
Citation: GAO Yanyu, YANG Yang, CHEN Fei. Off-line handwritten Chinese character recognition based on fusion features and LS-SVM[J]. Chinese Journal of Engineering, 2005, 27(4): 509-512. doi: 10.13374/j.issn1001-053x.2005.04.030

Off-line handwritten Chinese character recognition based on fusion features and LS-SVM

doi: 10.13374/j.issn1001-053x.2005.04.030
  • Received Date: 2004-05-10
  • Rev Recd Date: 2004-07-09
  • Available Online: 2021-08-17
  • The proposed off-line handwritten Chinese character recognition system was composed of a feature extraction module and a recognition module. In the feature extraction module, the orthogonal Zernike moments and the elastic mesh technique were combined to get fusion features, which present the global and local features of handwritten Chinese characters and have great discriminative capability. As for the classification module, one approach that is very similar to the neural network classification strategy was used with the Least Square Vector Machine (LSSVM), which not only has the excellent performance of generalization and recognition accuracy, but also can solve the multi-classification issue effectively. Experimental results indicated that the proposed method could get good recognition results.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (161) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频