<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 22 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
PAN Ziwei, XU Jinwu. A Supervised Fuzzy ART Neural Network for Pattern Classification[J]. Chinese Journal of Engineering, 2000, 22(3): 262-265. doi: 10.13374/j.issn1001-053x.2000.03.020
Citation: PAN Ziwei, XU Jinwu. A Supervised Fuzzy ART Neural Network for Pattern Classification[J]. Chinese Journal of Engineering, 2000, 22(3): 262-265. doi: 10.13374/j.issn1001-053x.2000.03.020

A Supervised Fuzzy ART Neural Network for Pattern Classification

doi: 10.13374/j.issn1001-053x.2000.03.020
  • Received Date: 1999-10-19
    Available Online: 2021-08-27
  • A new neural network model that incorporates a supervised mechanism into a fuzzy ART is investigated. The model can cope with supervised learning and unsupervised learning simultaneously, and has the ability of incremental learning. A few experiments of bearing pattern classification prove pefformance of the model and by comparing pefformance of the model with BP model. The results of experiments indicate tha the model has the ability of pattem classification and flexibility.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (243) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频