<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 17 Issue 6
Sep.  2021
Turn off MathJax
Article Contents
Yang Shangbao, Yang Tianjun, Dong Yicheng. Prediction Model of Si Content in Hot Metal Based on Nueral Networks[J]. Chinese Journal of Engineering, 1995, 17(6): 524-528. doi: 10.13374/j.issn1001-053x.1995.06.006
Citation: Yang Shangbao, Yang Tianjun, Dong Yicheng. Prediction Model of Si Content in Hot Metal Based on Nueral Networks[J]. Chinese Journal of Engineering, 1995, 17(6): 524-528. doi: 10.13374/j.issn1001-053x.1995.06.006

Prediction Model of Si Content in Hot Metal Based on Nueral Networks

doi: 10.13374/j.issn1001-053x.1995.06.006
  • Received Date: 1995-06-15
    Available Online: 2021-09-06
  • According to the checking method of blast furnace in our country,prediction model of silicon content in bot metal on mueral metworks has been developed by applying the method of artificial networks.This model has good adaptability and self-learning function.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (260) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频