<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 5 Issue 1
Nov.  2021
Turn off MathJax
Article Contents
Guan Kezhi, Zhou Jihua, Zhu Qisheng, Sun Shihui. An Experimental study of the Resistance to plastic Deformation of Hot Rolling Metals[J]. Chinese Journal of Engineering, 1983, 5(1): 123-139. doi: 10.13374/j.issn1001-053x.1983.01.010
Citation: Guan Kezhi, Zhou Jihua, Zhu Qisheng, Sun Shihui. An Experimental study of the Resistance to plastic Deformation of Hot Rolling Metals[J]. Chinese Journal of Engineering, 1983, 5(1): 123-139. doi: 10.13374/j.issn1001-053x.1983.01.010

An Experimental study of the Resistance to plastic Deformation of Hot Rolling Metals

doi: 10.13374/j.issn1001-053x.1983.01.010
  • Available Online: 2021-11-15
  • A Can Plastometer Was used to Compress Cylindrical specimens. There are hollows on the cross-section of one end of the specimens and the hollows were filled up with glass powder with various fusion temperatures. A heat keeping device was used to assure uniform and constant temperature during the experiment. The experimental results concern with the resistance to deformation of ten types of steel at elevated temperature and high strain rates. The experimental conditions were as follows:temperature 850-1200℃, Strain rate 5-80S-1 and reduction up to ln2(e=ln1hH).
    In this paper the experimental method has been described and influences of temperature of strain rates and of reduction on the resistance to deformation hsave been analysed. By linear and non-linear regression analysis of the exper mental data, a formula for calculating resistance to deformation which may be preferable for either computer-controll model or engeneering practice was recommended.
    The formula is:
    $\sigma ={\rm{EXP(}}\frac{{{{\rm{U}}_1}}}{{\rm{T}}}{\rm{ + }}{{\rm{U}}_2}{\rm{)\cdot(}}\frac{{\rm{u}}}{{10}}{{\rm{)}}^{{{\rm{U}}_3}{\rm{T + }}{{\rm{U}}_4}}}{\rm{\cdot}}\left({{{\rm{U}}_6}{{(\frac{{\rm{e}}}{{0.4}})}^{{{\rm{U}}_5}}}-({{\rm{U}}_6}-1)\frac{{\rm{e}}}{{0.4}}} \right)$
    here:T=$\frac{{{\rm{t}} + 273}}{{1000}}$
    U1-U6 are coefficients determined by the properties of the experimental steel.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (362) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频