Co-mining of mineral and geothermal resources: A state-of-the-art review and future perspectives
-
摘要: 地熱能作為一種綠色清潔且儲量巨大的可再生能源,在降低礦產資源深部開采成本方面具有顯著優勢和發展潛力。充分利用深部巖體中蘊藏的地熱能,不僅可以有效緩解礦產資源開采中的熱害難題,而且有利于促進我國能源產業的綠色低碳和可持續發展。在梳理當前可能伴生有地熱資源的礦產資源基礎上,對現有的礦?熱資源共采技術進行了回顧和總結,分析展望了未來礦?熱資源共采的新模式,介紹了基于鹵水循環系統的礦?熱資源共采、基于開挖技術的礦?熱資源共采、基于充填采礦法的礦?熱資源共采、基于溶浸采礦法的礦?熱資源共采和基于廢棄礦井再利用的礦?熱資源共采等技術方案,同時指出了礦?熱資源共采所面臨的主要挑戰,包括加強礦?熱共同賦存區勘探、發展深部高溫堅硬巖層破巖與掘進技術、加強深部多場耦合環境巖石力學理論與試驗研究、建立礦?熱資源共采熱能分級利用體系。相關研究成果旨在釋放礦產資源開采中的地熱能發展潛力并促進地熱資源的規模化利用,可為我國深部礦產資源開采和地熱資源開發提供有益的參考和借鑒。開展礦產與地熱資源共采戰略研究,有望為推進我國深部資源開發和實現“碳達峰、碳中和”的雙碳目標提供一條有效途徑。Abstract: With the continuous increase in mining depths for mineral resources, the high-temperature thermal damage caused by deep earth temperatures has become a critical factor that restricts the safe and efficient mining of mineral resources. High-temperature environments directly affect the health of underground operators and reduce the service performance and lifetime of underground facilities and equipment. These high temperatures not only restrict mining efficiencies but also are a major safety hazard. However, the existing shaft facilities and abundant heat in the deep layers of mines provide favorable conditions for the large-scale development and utilization of geothermal energy. As clean and renewable energy, geothermal energy has significant advantages and great potential to reduce the cost of the deep mining of mineral resources. Making full use of geothermal energy stored in deep rock masses can not only effectively alleviate heat damage in mineral resource mining but also can promote the green, low-carbon, and sustainable development of the energy industry. To categorize mineral resources that may be associated with geothermal resources, here, we review and summarize existing mineral–geothermal co-mining technologies, i.e., the mine water source heat pump system, high-temperature exchange machinery system, deep salt mine geothermal extraction system, and oil and gas field geothermal energy comprehensive utilization project. Future modes, i.e., co-mining based on a brine circulation system, excavation technology, the filling mining method, in situ leaching method, and reuse of abandoned mines, are also analyzed. Moreover, the main challenges faced during the co-mining are discussed, including strengthening the exploration of the co-mining areas with mineral–thermal resources, developing rock breaking and tunneling technology for deep high-temperature hard rocks, strengthening the theoretical and experimental research of deep multifield coupled environmental rock mechanics, and establishing a graded utilization system of thermal energy for the co-mining of mineral–thermal resources. These research results are aimed at promoting geothermal energy development in the mining of mineral resources to benefit the large-scale utilization of geothermal resources and can provide a useful reference for the mining of deep mineral resources and the development of geothermal resources in China. Furthermore, promoting mineral–geothermal co-mining can promote the development of China’s deep resources to achieve the double carbon goal of “carbon peaking and carbon neutralization.”
-
表 1 我國部分金屬礦井原巖溫度測量結果
Table 1. Original rock temperatures in some metal mines in China
Mining area Depth of monitoring sites/m Virgin rock temperature/°C Luohe Iron Mine 700 38–42 Dongguashan Copper Mine 1100 40 Gaofeng Tin Mine 690 39 Banxi Antimony Mine 750 32 Xikuangshan Antimony Mine 855 35.3 Dahongshan Copper Mine 660 32 Hongtoushan Copper Mine 1257 38 Erdaogou Gold Mine 1300 30–32 Xiadian Gold Mine 850 35.2 Caojiawa Gold Mine 800 47.3 Xiangxi Gold Mine 1100 36 Xincheng Gold Mine 380 35 Sanshandao Gold Mine 825 35.4 Jiapigou Gold Mine 1600 38 Jiudian Gold Mine 560 42 Sishanling Iron Mine 1455 30–35 Nihe Iron Mine 870 40.87 表 2 我國部分油田地熱能利用項目[44]
Table 2. Geothermal energy utilization projects of some oilfields in China[44]
Oilfield Number of projects Geothermal source Technology Major application Efficiency Daqing 5 Waste-heat utilization of produced water Heat pump Space heating, heat-tracing oil gathering and transportation Replaces 7000 t of standard coal per year Liaohe 12 Waste-heat utilization of produced water, drilling geothermal wells Heat pump Space heating, bathing Replaces 24400 t of standard coal per year Huabei 5 Waste-heat utilization of produced water, reconstructing abandoned wells into geothermal wells Direct utilization of medium and Low-temperature geothermal power generation Heat-tracing oil gathering and transportation, power generation Saves 180000 m3 of gas,
6800 t of oil, and 600 t
of coal per yearZhongyuan 1 Waste-heat utilization of produced water Heat pump Space heating Saves 2537 t of standard
coal per year -
參考文獻
[1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [2] Cai M F, Tan W H, Wu X H, et al. Current situation and development strategy of deep intelligent mining in metal mines. Chin J Nonferrous Met, 2021, 31(11): 3409 doi: 10.11817/j.ysxb.1004.0609.2021-42115蔡美峰, 譚文輝, 吳星輝, 等. 金屬礦山深部智能開采現狀及其發展策略. 中國有色金屬學報, 2021, 31(11):3409 doi: 10.11817/j.ysxb.1004.0609.2021-42115 [3] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001 [4] He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures. Chin J Rock Mech Eng, 2013, 32(12): 2377何滿潮, 郭平業. 深部巖體熱力學效應及溫控對策. 巖石力學與工程學報, 2013, 32(12):2377 [5] Yuan L. Theoretical analysis and practical application of coal mine cooling in Huainan mining area. J Min &Saf Eng, 2007, 24(3): 298 doi: 10.3969/j.issn.1673-3363.2007.03.010袁亮. 淮南礦區礦井降溫研究與實踐. 采礦與安全工程學報, 2007, 24(3):298 doi: 10.3969/j.issn.1673-3363.2007.03.010 [6] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021 [7] Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43 [8] Zhang H Y. Measures and ways to save energy in underground mines. Met Mine, 1981(11): 13張化遠. 地下礦山節能的措施及途徑. 金屬礦山, 1981(11):13 [9] Wan Z J, Bi S K, Zhang Y, et al. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources. J China Coal Soc, 2018, 43(8): 2099萬志軍, 畢世科, 張源, 等. 煤–熱共采的理論與技術框架. 煤炭學報, 2018, 43(8):2099 [10] Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161 doi: 10.13722/j.cnki.jrme.2015.1369謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161 doi: 10.13722/j.cnki.jrme.2015.1369 [11] Preene M, Younger P L. Can you take the heat?–Geothermal energy in mining. Min Technol, 2014, 123(2): 107 doi: 10.1179/1743286314Y.0000000058 [12] Bailey M T, Gandy C J, Watson I A, et al. Heat recovery potential of mine water treatment systems in Great Britain. Int J Coal Geol, 2016, 164: 77 doi: 10.1016/j.coal.2016.03.007 [13] Abbaspour H, Abbaspour F. Renewable energy systems in the mining industry: A literature review and research agenda. Int J Renew Energy Res, 2022, 12(1): 569 [14] Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476 [15] Guo Q F, Xi X, Yang S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3 [16] Yuan L. Research progress of mining response and disaster prevention and control in deep coal mines. J China Coal Soc, 2021, 46(3): 716 doi: 10.13225/j.cnki.jccs.YT21.0158袁亮. 深部采動響應與災害防控研究進展. 煤炭學報, 2021, 46(3):716 doi: 10.13225/j.cnki.jccs.YT21.0158 [17] Huang B X, Zhang N, Jing H W, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway. J China Coal Soc, 2020, 45(3): 911 doi: 10.13225/j.cnki.jccs.SJ19.1451黃炳香, 張農, 靖洪文, 等. 深井采動巷道圍巖流變和結構失穩大變形理論. 煤炭學報, 2020, 45(3):911 doi: 10.13225/j.cnki.jccs.SJ19.1451 [18] Lan H, Chen D K, Mao D B. Current status of deep mining and disaster prevention in China. Coal Sci Technol, 2016, 44(1): 39 doi: 10.13199/j.cnki.cst.2016.01.007藍航, 陳東科, 毛德兵. 我國煤礦深部開采現狀及災害防治分析. 煤炭科學技術, 2016, 44(1):39 doi: 10.13199/j.cnki.cst.2016.01.007 [19] Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005 [20] Li L G, Li B X. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide basin and mountain geothermal field in Qinghai Province. Geophys Geochem Explor, 2017, 41(1): 29李林果, 李百祥. 從青海共和—貴德盆地與山地地溫場特征探討熱源機制和地熱系統. 物探與化探, 2017, 41(1):29 [21] Tang X C, Zhang J, Pang Z H, et al. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China. Environ Earth Sci, 2016, 76(1): 1 [22] Zhang L, Chen Z Y, Wang F Y. General characteristics and research progresses in metallogenesis of granite-related uranium deposits in South China. Acta Petrol Sin, 2021, 37(9): 2657 doi: 10.18654/1000-0569/2021.09.04張龍, 陳振宇, 汪方躍. 華南花崗巖型鈾礦床主要特征與成礦作用研究進展. 巖石學報, 2021, 37(9):2657 doi: 10.18654/1000-0569/2021.09.04 [23] Li J W, Zhou M F, Li X F, et al. Structural control on uranium mineralization in South China: Implications for fluid flow in continental strike-slip faults. Sci China Ser D Earth Sci, 2002, 45(9): 851 doi: 10.1007/BF02879519 [24] Zhao Z F, Zheng Y F, Wei C S, et al. Temporal relationship between granite cooling and hydrothermal uranium mineralization at Dalongshan in China: a combined radiometric and oxygen isotopic study. Ore Geol Rev, 2004, 25(3-4): 221 doi: 10.1016/j.oregeorev.2004.04.002 [25] Qiu L, Yan D P, Ren M H, et al. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China. Ore Geol Rev, 2018, 96: 201 doi: 10.1016/j.oregeorev.2018.04.001 [26] Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China. China Geol, 2018, 1(2): 273 doi: 10.31035/cg2018021 [27] Zhu M X, Tong W. Surface hydrothermal minerals and their distribution in the Tengchong geothermal area, China. Geothermics, 1987, 16(2): 181 doi: 10.1016/0375-6505(87)90065-4 [28] Li Y Y, Duo J, Zhang C J, et al. Genetic relationship between geothermal energy and hydrothermal uranium deposits: Research progress and method. Geol Rev, 2020, 66(5): 1361李燕燕, 多吉, 張成江, 等. 地熱與熱液型鈾礦成因聯系: 研究現狀及解決方法. 地質論評, 2020, 66(5):1361 [29] Liu C L, Yu X C, Yuan X Y, et al. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world. Acta Geol Sin, 2021, 95(7): 2009 doi: 10.3969/j.issn.0001-5717.2021.07.001劉成林, 余小燦, 袁學銀, 等. 世界鹽湖鹵水型鋰礦特征、分布規律與成礦動力模型. 地質學報, 2021, 95(7):2009 doi: 10.3969/j.issn.0001-5717.2021.07.001 [30] Wang C, Zheng M P, Zhang X F, et al. Geothermal‐type lithium resources in southern Xizang, China. Acta Geol Sin Engl Ed, 2021, 95(3): 860 doi: 10.1111/1755-6724.14675 [31] Stringfellow W T, Dobson P F. Technology for the recovery of lithium from geothermal brines. Energies, 2021, 14(20): 6805 doi: 10.3390/en14206805 [32] Wang C G, Zheng M P, Zhang X F, et al. Geothermal-type lithium resources in southern Tibetan Plateau. Sci &Technol Rev, 2020, 38(15): 24 doi: 10.3981/j.issn.1000-7857.2020.15.003王晨光, 鄭綿平, 張雪飛, 等. 青藏高原南部地熱型鋰資源. 科技導報, 2020, 38(15):24 doi: 10.3981/j.issn.1000-7857.2020.15.003 [33] Tan H B, Su J B, Xu P, et al. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan Plateau: Constraints from geochemical experimental data. Appl Geochem, 2018, 93: 60 doi: 10.1016/j.apgeochem.2018.04.001 [34] Guo L N. Metallogenic mechanism of the Jiaodong-type gold deposit, Shandong Province, China [Dissertation]. Beijing: China University of Geosciences (Beijing), 2016郭林楠. 膠東型金礦床成礦機理[學位論文]. 北京: 中國地質大學(北京), 2016 [35] Song M C, Ding Z J, Liu X D, et al. Structural controls on the Jiaodong type gold deposits and metallogenic model. Acta Geol Sin, 2022, 96(5): 1774 doi: 10.3969/j.issn.0001-5717.2022.05.017宋明春, 丁正江, 劉向東, 等. 膠東型金礦床斷裂控礦及成礦模式. 地質學報, 2022, 96(5):1774 doi: 10.3969/j.issn.0001-5717.2022.05.017 [36] Ding Z J, Sun F Y, Liu F L, et al. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China. Acta Petrol Sin, 2015, 31(10): 3045丁正江, 孫豐月, 劉福來, 等. 膠東中生代動力學演化及主要金屬礦床成礦系列. 巖石學報, 2015, 31(10):3045 [37] Bu M. Study on comprehensive utilization of deep geothermal brine. China Well Rock Salt, 2016, 47(1): 1 doi: 10.3969/j.issn.1001-0335.2016.01.001卜明. 深井巖鹽鹵水地熱能綜合利用研究. 中國井礦鹽, 2016, 47(1):1 doi: 10.3969/j.issn.1001-0335.2016.01.001 [38] Gray T A. Geothermal Resource Assessment of the Gueydan Salt Dome and the Adjacent Southeast Gueydan Field, Vermilion Parish, Louisiana [Dissertation]. Louisiana: Louisiana State University and Agricultural & Mechanical College, 2010 [39] Warren J K. Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth Sci Rev, 2017, 165: 302 doi: 10.1016/j.earscirev.2016.11.008 [40] Wang X F. Preliminary study on utilization of geothermal energy from brine of deep buried salt mine. China Well Rock Salt, 2022, 53(4): 8 doi: 10.3969/j.issn.1001-0335.2022.04.003王向鋒. 深埋鹽礦鹵水地熱能利用初探. 中國井礦鹽, 2022, 53(4):8 doi: 10.3969/j.issn.1001-0335.2022.04.003 [41] Wang S J, Li F, Yan J H, et al. Evaluation methods and application of geothermal resources in oilfields. Acta Petrolei Sin, 2020, 41(5): 553 doi: 10.7623/syxb202005004王社教, 李峰, 閆家泓, 等. 油田地熱資源評價方法及應用. 石油學報, 2020, 41(5):553 doi: 10.7623/syxb202005004 [42] Li K W, Wang L, Mao X P, et al. Evaluation and efficient development of geothermal resource associated with oilfield. Sci Technol Rev, 2012, 30(32): 32 doi: 10.3981/j.issn.1000-7857.2012.32.003李克文, 王磊, 毛小平, 等. 油田伴生地熱資源評價與高效開發. 科技導報, 2012, 30(32):32 doi: 10.3981/j.issn.1000-7857.2012.32.003 [43] Gao D J. Paying attention to the exploitation and utilization advantages of geothermal resources in oilfields to promote its green development—A case study of Shengli Oilfield. Nat Resour Econ China, 2017, 30(4): 30 doi: 10.3969/j.issn.1672-6995.2017.04.008高德君. 重視油田地熱資源開發利用優勢 推動綠色發展——以勝利油田為例. 中國國土資源經濟, 2017, 30(4):30 doi: 10.3969/j.issn.1672-6995.2017.04.008 [44] Wang S J, Yan J H, Li F, et al. Exploitation and utilization of oilfield geothermal resources in China. Energies, 2016, 9(10): 798 doi: 10.3390/en9100798 [45] Xu Y, Li Z J, Jia M T, et al. Conceptualization and method for synergetic mining of geothermal energy as solution to heat hazard control in deep mines. Chin J Nonferrous Met, 2022, 32(5): 1515徐宇, 李孜軍, 賈敏濤, 等. 深部礦井熱害治理協同地熱能開采構想及方法分析. 中國有色金屬學報, 2022, 32(5):1515 [46] Zhang Y L, Liu Y X, Chen X S. Utilization methods of geothermal resources in Jiaodong peninsula mines. Met Mine, 2014(5): 158張永亮, 劉耀香, 陳喜山. 膠東半島礦山地熱資源利用方法. 金屬礦山, 2014(5):158 [47] Liu J G. Study and practice of low-carbon ecological mining construction of Jizhong energy group. J China Coal Soc, 2011, 36(2): 317 doi: 10.13225/j.cnki.jccs.2011.02.031劉建功. 冀中能源低碳生態礦山建設的研究與實踐. 煤炭學報, 2011, 36(2):317 doi: 10.13225/j.cnki.jccs.2011.02.031 [48] Wang C L, Cheng L, Hao Y J, et al. Efficiency improvement and application of the groundwater heat pump cooling system in linglong gold mine. Geofluids, 2022: 3191735 [49] He M C, Guo P Y, Chen X Q, et al. Research on characteristics of high-temperature and control of heat-harm of sanhejian coal mine. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 2593何滿潮, 郭平業, 陳學謙, 等. 三河尖礦深井高溫體特征及其熱害控制方法. 巖石力學與工程學報, 2010, 29(增刊1): 2593 [50] He M C, Xu M. Research and development of hems cooling system and heat-harm control in deep mine. Chin J Rock Mech Eng, 2008, 27(7): 1353 doi: 10.3321/j.issn:1000-6915.2008.07.007何滿潮, 徐敏. HEMS深井降溫系統研發及熱害控制對策. 巖石力學與工程學報, 2008, 27(7):1353 doi: 10.3321/j.issn:1000-6915.2008.07.007 [51] Ping Q, He M C, Meng L, et al. Working principle and application of HEMS with lack of a cold source. Min Sci Technol China, 2011, 21(3): 433 doi: 10.1016/j.mstc.2011.05.017 [52] Wang J B, Wang X P, Zhang Q, et al. Dynamic prediction model for surface settlement of horizontal salt rock energy storage. Energy, 2021, 235: 121421 doi: 10.1016/j.energy.2021.121421 [53] Fan C Z. Tentative idea of exploiting geothermal energy in ultra-deep salt mines. China Salt Ind, 2016(18): 40 doi: 10.19396/j.cnki.issn1004-9169.2016.18.009樊傳忠. 在超深鹽礦中開采地熱的設想. 中國鹽業, 2016(18):40 doi: 10.19396/j.cnki.issn1004-9169.2016.18.009 [54] Wang J Y, Qiu N S, Hu S B, et al. Advancement and developmental trend in the geothermics of oil fields in China. Earth Sci Front, 2017, 24(3): 1 doi: 10.13745/j.esf.2017.03.001汪集暘, 邱楠生, 胡圣標, 等. 中國油田地熱研究的進展和發展趨勢. 地學前緣, 2017, 24(3):1 doi: 10.13745/j.esf.2017.03.001 [55] Li J L, Chen A G. Analysis on geothermal exploitation and utilization pattern in Hebei Province. Nat Resour Econ China, 2013, 26(8): 28 doi: 10.3969/j.issn.1672-6995.2013.08.007李金鹿, 陳安國. 河北省地熱開發利用模式分析. 中國國土資源經濟, 2013, 26(8):28 doi: 10.3969/j.issn.1672-6995.2013.08.007 [56] Lawrence Berkeley National Laboratory. Extracting lithium from geothermal brine to develop a domestic source of critical energy resource [J/OL]. SciTechDaily (2021-12-01) [2022-08-24].https://scitechdaily.com/extracting-lithium-from-geothermal-brine-to-develop-a-domestic-source-of-critical-energy-resource/ [57] Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review. Renew Sustain Energy Rev, 2016, 56: 133 doi: 10.1016/j.rser.2015.11.031 [58] Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): introduction to a new concept. Geomech Geophys Geo-Energ Geo-Resour, 2020, 6(1): 6 doi: 10.1007/s40948-019-00127-y [59] Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185 doi: 10.13745/j.esf.2020.1.20亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185 doi: 10.13745/j.esf.2020.1.20 [60] Tang M, Li H, Tang C A. Study on preliminarily estimating performance of elementary deep underground engineering structures in future large-scale heat mining projects. Geofluids, 2019: 3456307 [61] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124 doi: 10.19614/j.cnki.jsks.202005018宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124 doi: 10.19614/j.cnki.jsks.202005018 [62] Liu L, Xin J, Zhang B, et al. Basic theories and applied exploration of functional backfill in mines. J China Coal Soc, 2018, 43(7): 1811 doi: 10.13225/j.cnki.jccs.2017.1626劉浪, 辛杰, 張波, 等. 礦山功能性充填基礎理論與應用探索. 煤炭學報, 2018, 43(7):1811 doi: 10.13225/j.cnki.jccs.2017.1626 [63] Zhang B, Xue P Y, Liu L, et al. Exploration on the method of ore deposit-geothermal energy synergetic mining in deep backfill mines. J China Coal Soc, 2021, 46(9): 2824 doi: 10.13225/j.cnki.jccs.2020.1596張波, 薛攀源, 劉浪, 等. 深部充填礦井的礦床-地熱協同開采方法探索. 煤炭學報, 2021, 46(9):2824 doi: 10.13225/j.cnki.jccs.2020.1596 [64] Li B Y, Zhang J X, Ghoreishi-Madiseh S A, et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines. J Clean Prod, 2020, 275: 122647 doi: 10.1016/j.jclepro.2020.122647 [65] Zhang X Y, Wen D, Zhao Y J, et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine. J China Coal Soc, 2021, 46(10): 3158 doi: 10.13225/j.cnki.jccs.2020.1457張小艷, 文德, 趙玉嬌, 等. 礦山蓄熱/儲能充填體的熱-力性能與傳熱過程. 煤炭學報, 2021, 46(10):3158 doi: 10.13225/j.cnki.jccs.2020.1457 [66] Hartai é, Bodó B. Combining energy production and mineral extraction–The CHPM2030 project. Eur Geol, 2017(43): 6 [67] Song X Z, Xu F Q, Song G F. Technical status and development suggestions in exploiting geothermal energy from abandoned wells. Pet Drill Tech, 2020, 48(6): 1 doi: 10.11911/syztjs.2020120宋先知, 許富強, 宋國鋒. 廢棄井地熱能開發技術現狀與發展建議. 石油鉆探技術, 2020, 48(6):1 doi: 10.11911/syztjs.2020120 [68] Hall A, Scott J A, Shang H. Geothermal energy recovery from underground mines. Renew Sustain Energy Rev, 2011, 15(2): 916 doi: 10.1016/j.rser.2010.11.007 [69] Pu H, Bian Z F, Zhang J X, et al. Research on a reuse mode of geothermal resources in abandoned coal mines. J China Coal Soc, 2021, 46(2): 677 doi: 10.13225/j.cnki.jccs.xr20.1845浦海, 卞正富, 張吉雄, 等. 一種廢棄礦井地熱資源再利用系統研究. 煤炭學報, 2021, 46(2):677 doi: 10.13225/j.cnki.jccs.xr20.1845 [70] Guo P Y, Zheng L G, Sun X M, et al. Sustainability evaluation model of geothermal resources in abandoned coal mine. Appl Therm Eng, 2018, 144: 804 doi: 10.1016/j.applthermaleng.2018.06.070 [71] Bao T, Cao H, Qin Y H, et al. Critical insights into thermohaline stratification for geothermal energy recovery from flooded mines with mine water. J Clean Prod, 2020, 273: 122989 doi: 10.1016/j.jclepro.2020.122989 [72] Menéndez J, Ordó?ez A, álvarez R, et al. Energy from closed mines: Underground energy storage and geothermal applications. Renew Sustain Energy Rev, 2019, 108: 498 doi: 10.1016/j.rser.2019.04.007 -