<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

膠東地區礦產與地熱資源共采可行性淺析

劉敏 毛景文 蔣宗勝 趙盼撈

劉敏, 毛景文, 蔣宗勝, 趙盼撈. 膠東地區礦產與地熱資源共采可行性淺析[J]. 工程科學學報, 2022, 44(10): 1652-1659. doi: 10.13374/j.issn2095-9389.2022.07.12.002
引用本文: 劉敏, 毛景文, 蔣宗勝, 趙盼撈. 膠東地區礦產與地熱資源共采可行性淺析[J]. 工程科學學報, 2022, 44(10): 1652-1659. doi: 10.13374/j.issn2095-9389.2022.07.12.002
LIU Min, MAO Jing-wen, JIANG Zong-sheng, ZHAO Pan-lao. Feasibility analysis of co-mining of mineral and geothermal resources in the Jiaodong Peninsula[J]. Chinese Journal of Engineering, 2022, 44(10): 1652-1659. doi: 10.13374/j.issn2095-9389.2022.07.12.002
Citation: LIU Min, MAO Jing-wen, JIANG Zong-sheng, ZHAO Pan-lao. Feasibility analysis of co-mining of mineral and geothermal resources in the Jiaodong Peninsula[J]. Chinese Journal of Engineering, 2022, 44(10): 1652-1659. doi: 10.13374/j.issn2095-9389.2022.07.12.002

膠東地區礦產與地熱資源共采可行性淺析

doi: 10.13374/j.issn2095-9389.2022.07.12.002
基金項目: 中國工程院咨詢項目課題資助項目(2019-XZ-16-01-02)
詳細信息
    通訊作者:

    E-mail: liuminhello@163.com

  • 中圖分類號: TG142.71

Feasibility analysis of co-mining of mineral and geothermal resources in the Jiaodong Peninsula

More Information
  • 摘要: 地熱作為一種清潔環保的綠色能源,其有效利用是我國實現雙碳目標的重要方向之一。但在礦產資源開采,尤其是地下礦山向深部開發過程中,由于受地溫梯度影響,導致礦井溫度過高,成為制約礦山生產的重要因素,為維持正常生產,礦山多采取加強通風或人工降溫的方式進行處理。如何在礦山開發過程中將地熱資源變害為寶,實現資源開發利用的雙贏,是值得探討的難題。膠東是我國最大的黃金生產基地,也是我國東部地熱資源最為豐富的地區之一。該區地熱和礦產資源具有相似的動力來源和運輸通道,使二者在空間分布上具有高度重合性,諸多大型礦山不僅礦產資源儲量大,地熱資源也相當豐富,是最有望實現地熱與礦產資源共采的地區。在分析膠東地區地熱和礦產資源分布成因的基礎上,梳理了我國低溫地熱資源利用的現狀,認為膠東地區金礦資源埋藏和開采深度較大,建議對三山島、金青頂、新城、玲瓏金礦等利用相對成熟的低溫地熱供暖技術,治理礦山熱害的同時實現礦產與地熱資源的共采。

     

  • 圖  1  膠東地區金礦和溫泉分布圖

    Figure  1.  Distribution map of gold deposits and hot springs in the Jiaodong district

    久色视频
  • [1] Wang G L, Yang X, Ma L, et al. Status quo and prospects of geothermal energy in heat supply. Huadian Technol, 2021, 43(11): 15

    王貴玲, 楊軒, 馬凌, 等. 地熱能供熱技術的應用現狀及發展趨勢. 華電技術, 2021, 43(11):15
    [2] Cai M F, Dor J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43

    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
    [3] Mao J W, Xie G Q, Guo C L, et al. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geol J China Univ, 2008, 14(4): 510 doi: 10.3969/j.issn.1006-7493.2008.04.005

    毛景文, 謝桂青, 郭春麗, 等. 華南地區中生代主要金屬礦床時空分布規律和成礦環境. 高校地質學報, 2008, 14(4):510 doi: 10.3969/j.issn.1006-7493.2008.04.005
    [4] Mao J W, Ouyang H G, Song S W, et al. Geology and metallogeny of tungsten and tin deposits in China. SEG Spec Publ, 2019, 22: 411
    [5] Mao J W, Xie G Q, Li X F, et al. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Sci Front, 2004, 11(1): 45 doi: 10.3321/j.issn:1005-2321.2004.01.003

    毛景文, 謝桂青, 李曉峰, 等. 華南地區中生代大規模成礦作用與巖石圈多階段伸展. 地學前緣, 2004, 11(1):45 doi: 10.3321/j.issn:1005-2321.2004.01.003
    [6] Yang L Q, Deng J, Wang Z L, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, Eastern China. Acta Petrol Sin, 2014, 30(9): 2447

    楊立強, 鄧軍, 王中亮, 等. 膠東中生代金成礦系統. 巖石學報, 2014, 30(9):2447
    [7] Deng J, Wang Q F, Li G J, et al. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geol Rev, 2015, 65: 42 doi: 10.1016/j.oregeorev.2014.08.002
    [8] Deng J, Yang L Q, Ge L S, et al. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Prog Nat Sci, 2006, 16(8): 777 doi: 10.1080/10020070612330069
    [9] Deng J, Wang Q F, Yang L Q, et al. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China. Acta Geol Sin Engl Ed, 2008, 82(4): 769
    [10] Deng J, Liu W, Sun Z S, et al. Evidence of mantle-rooted fluids and multi-level circulation ore-forming dynamics: A case study from the Xiadian gold deposit, Shandong province, China. Science in China Series D, 2003, 46(Suppl 1): 123)
    [11] Song M C, Li J, Zhou J B, et al. The discovery and tectonic setting of the Early Cretaceous high-Mg diorites in the Jiaodong Peninsula. Acta Petrol Sin, 2020, 36(1): 279 doi: 10.18654/1000-0569/2020.01.22

    宋明春, 李杰, 周建波, 等. 膠東早白堊世高鎂閃長巖類的發現及其構造背景. 巖石學報, 2020, 36(1):279 doi: 10.18654/1000-0569/2020.01.22
    [12] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02

    王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02
    [13] Mao J W, Liu P, Goldfarb R J, et al. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geol Rev, 2021, 136: 104270 doi: 10.1016/j.oregeorev.2021.104270
    [14] Shi M, Kang F X, Zhang J, et al. Occurrence mechanism and geothermal exploration model of low-medium temperature geothermal systems of convective type in Jiaodong Peninsula. Geol Rev, 2019, 65(5): 1276 doi: 10.16509/j.georeview.2019.05.016

    史猛, 康鳳新, 張杰, 等. 膠東半島中低溫對流型地熱資源賦存機理及找熱模型. 地質論評, 2019, 65(5):1276 doi: 10.16509/j.georeview.2019.05.016
    [15] Shi M, Kang F X, Zhang J, et al. Discussion on the deep heat flow diversion-acculturation between uplift and depression in different tectonic units in the Jiaodong Peninsula. Acta Geol Sin, 2021, 95(5): 1594 doi: 10.3969/j.issn.0001-5717.2021.05.020

    史猛, 康鳳新, 張杰, 等. 膠東半島不同構造單元深部熱流分流聚熱模式. 地質學報, 2021, 95(5):1594 doi: 10.3969/j.issn.0001-5717.2021.05.020
    [16] Pan S Z, Wang F Y, Zheng Y P, et al. Crustal velocity structure beneath Jiaodong Peninsula and its tectonic implications. Chin J Geophys, 2015, 58(9): 3251 doi: 10.6038/cjg20150920

    潘素珍, 王夫運, 鄭彥鵬, 等. 膠東半島地殼速度結構及其構造意義. 地球物理學報, 2015, 58(9):3251 doi: 10.6038/cjg20150920
    [17] Jiang G, Tang X, Rao S, et al. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton. J Asian Earth Sci, 2016, 118: 1 doi: 10.1016/j.jseaes.2016.01.009
    [18] Song M C, Ding Z J, Liu X D, et al. Structural controls on the Jiaodong type gold deposits and metallogenic model. Acta Geol Sin, 2022, 96(5): 1774

    宋明春, 丁正江, 劉向東, 等. 膠東型金礦床斷裂控礦及成礦模式. 地質學報, 2022, 96(5):1774
    [19] Zheng C B, Zhang C Z, Xu B, et al. Analysis on formation condition of golden mine terrestrial heat in old store. Ground Water, 2009, 31(5): 124 doi: 10.3969/j.issn.1004-1184.2009.05.044

    鄭春波, 張春志, 徐冰, 等. 舊店金礦地熱形成條件分析. 地下水, 2009, 31(5):124 doi: 10.3969/j.issn.1004-1184.2009.05.044
    [20] Zhou F B, Huang R T, Xin H H, et al. The extraction and resource utilization of heat and humidity in mine ventilation. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2022.04.19.001

    周福寶, 黃榮廷, 辛海會, 等. 礦井通風熱濕提取與資源化利用方法研究. 工程科學學報.https://doi.org/10.13374/j.issn2095-9389.2022.04.19.001
    [21] Cao R, Dor J, Li Y B, et al. Occurrence characteristics, development status, and prospect of deep hightemperature geothermal resources in China. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2022.04.07.003

    曹銳, 多吉, 李玉彬, 等. 我國中深層地熱資源賦存特征、發展現狀及展望. 工程科學學報,https://doi.org/ 10.13374/j.issn2095-9389.2022.04.07.003
    [22] Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476

    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476
    [23] Cai M F, Ma M H, Pan J L et al. Co-mining of mineral and geothermal resources: state-of-the-art review and future perspectives. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2022.08.24.001

    蔡美峰, 馬明輝, 潘繼良, 等. 礦產與地熱資源共采模式研究現狀及展望. 工程科學學報,https://doi.org/10.13374/j.issn2095-9389.2022.08.24.001
    [24] Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1 doi: 10.13745/j.esf.2020.1.1

    王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1 doi: 10.13745/j.esf.2020.1.1
    [25] Zhang Y L, Liu Y X, Chen X S. Utilization methods of geothermal resources in Jiaodong peninsula mines. Met Mine, 2014(4): 158

    張永亮, 劉耀香, 陳喜山. 膠東半島礦山地熱資源利用方法. 金屬礦山, 2014(4):158
    [26] Cheng L, Wu Q Z, Zhu M D, et al. Application of local refrigeration and cooling technology in the roadway excavation deep in Sanshandao Gold Mine. Gold, 2021, 42(1): 37 doi: 10.11792/hj20210107

    程力, 吳欽正, 朱明德, 等. 局部制冷降溫技術在三山島金礦深部巷道掘進中的應用. 黃金, 2021, 42(1):37 doi: 10.11792/hj20210107
    [27] Wang M B, Xu F, Zhou W. Application of refrigeration technology in deep mine heat hazard control. Mod Min, 2021, 37(8): 220 doi: 10.3969/j.issn.1674-6082.2021.08.057

    王明斌, 許峰, 周偉. 制冷降溫技術在三山島金礦熱害控制中的應用. 現代礦業, 2021, 37(8):220 doi: 10.3969/j.issn.1674-6082.2021.08.057
    [28] Sun S T, Lin L B. Analysis on the deep mineralization regularities and prospecting potential of Jinqingding gold deposit. Gold Sci Technol, 2009, 17(4): 31 doi: 10.3969/j.issn.1005-2518.2009.04.005

    孫樹提, 林麗波. 金青頂金礦床深部成礦規律及找礦前景分析. 黃金科學技術, 2009, 17(4):31 doi: 10.3969/j.issn.1005-2518.2009.04.005
  • 加載中
圖(1)
計量
  • 文章訪問數:  314
  • HTML全文瀏覽量:  84
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-07-12
  • 網絡出版日期:  2022-08-17
  • 刊出日期:  2022-10-25

目錄

    /

    返回文章
    返回