Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures
-
摘要: 水力耦合激活巖石天然裂隙,誘導裂隙擴展形成復雜裂隙網絡,增加巖石滲透性是礦產地熱共采體系中的關鍵技術。本文通過預制含單裂隙、T型裂隙和Y型裂隙的砂巖試樣,進行三軸水力耦合試驗,研究多形態裂隙砂巖的關鍵閾值(閉合應力、起裂應力、損傷應力、峰值強度)、彈性模量、泊松比以及破壞模式等力學特性,同時開展裂隙漸進演化過程中聲發射和滲透率的演化規律研究,進一步分析水力耦合作用下裂隙巖石增透機理。結果表明:多形態預制裂隙砂巖試樣在水力耦合作用下,既有裂隙均通過拉伸、剪切或混合模式擴展形成次生裂紋,構成裂隙網絡,試樣滲透率顯著增加。單裂隙試樣的次生裂隙以剪切破壞為主,T型和Y型裂隙試樣的次生裂隙為剪切破壞和張拉-剪切破壞兩類。此外,多形態裂隙對試樣強度的影響大于水的弱化作用。隨著軸壓增大,巖石滲透率峰前階段先減小后增大,達到強度破壞時突跳增大。當試樣達到峰值后應力突然下降時,滲透率達到最大值,滲透率增透效果最好。預制裂隙角度和形態的變化對突跳系數的影響幅度較小,單裂隙的平均突跳系數值大于Y型裂隙大于T型裂隙。研究結果有助于理解裂隙破壞和流體流動行為,進而指導礦產地熱共采的工程。Abstract: In mineral and geothermal resource co-mining, the underground rock is often affected by mining stress, and fractures of different shapes, such as single fractures, T-shaped fractures, and Y-shaped fractures, are generated. To increase the reservoir permeability, the existing fractures need to be reactivated, causing them to expand under force and propagate in shear and tension modes, generating new fractures and finally forming a fracture network to increase permeability. Waterjet cutting and wire cutting equipment are used to prefabricate sandstone samples with different inclinations and single, T-shaped, and Y-shaped fractures on standard samples. This paper conducts hydromechanical coupling experiments to investigate the possibility of increasing permeability by expanding and merging fractures in prefabricated fractured sandstone samples under triaxial conditions. In addition, the focus is on mechanical properties, such as critical thresholds (crack closure stress, crack initiation stress, damage stress, and peak strength), elastic moduli, and Poisson's ratio, and the failure modes of multiple-shape prefabricated fracture sandstone samples are mainly studied. Simultaneously, the evolution law of acoustic emission and permeability during the progressive failure of fractured rock is studied, and the mechanism of permeability enhancement of fractured rocks under the action of hydraulic coupling is analyzed. The results show that under the action of hydromechanical coupling, all multi-shape prefabricated fracture specimens form secondary cracks that expand in tensile, shearing, or mixed modes through the existing fractures and generate new fractures or fracture networks, which can effectively increase the flow rate. All single-fracture specimens are shear failures, and the T-shaped and Y-shaped fracture specimens have two types of shear failure and tension-shear failure. Furthermore, the weakening effect of water has a smaller effect on strength than the effect of multiple-shape prefabricated fractures. With increasing axial pressure, the rock permeability first decreases and then increases in the pre-peak stage, and the jump coefficient increases when reaching the strength failure. When the stress suddenly drops after the peak of the sample, the permeability reaches the maximum value, and the permeability enhancement effect is the best. The change in the prefabricated fracture angles and shapes has a small influence on the jump coefficient. The average value of the jump coefficients of a single fracture is larger than that of a Y-shaped fracture, which is larger than that of a T-shaped fracture, and the jump coefficients are more than doubled. These observational and experimental results will help to understand fracture failure and fluid flow behavior, which will guide the engineering applications of mineral and geothermal resource co-mining.
-
圖 3 完整和單裂隙試樣不同閾值、應力比率與傾角關系. (a)不同閾值與傾角關系;(b)應力比率與傾角關系
Figure 3. Relationship of fracture inclination with different thresholds and the stress ratios of intact and single-fracture samples: (a) relationship between different thresholds and fracture inclination; (b) relationship between stress ratios and fracture inclination
圖 4 完整和T型裂隙不同閾值、應力比率與傾角關系. (a)不同閾值與傾角關系; (b)應力比率與傾角關系
Figure 4. Relationship of fracture inclination with different thresholds and the stress ratios of intact and T-shaped fracture samples: (a) relationship between different thresholds and fracture inclination; (b) relationship between stress ratios and fracture inclination
圖 5 完整和Y型裂隙不同閾值、應力比率與傾角關系. (a)不同閾值與傾角關系; (b)應力比率與傾角關系
Figure 5. Relationship of fracture inclination with different thresholds and stress ratios of intact and Y-shaped fracture samples: (a) relationship between different thresholds and fracture inclination; (b) relationship between stress ratios and fracture inclination
圖 6 完整和單裂隙、T型、Y型裂隙彈性模量、泊松比傾角關系. (a)彈性模量與傾角關系; (b)泊松比與傾角關系
Figure 6. Relationship between the elastic modulus and Poisson's ratio of intact and single fracture, T-shaped, and Y-shaped fracture samples: (a) relationship between the elastic modulus and fracture inclination; (b) relationship between Poisson's ratio and fracture inclination
表 1 裂隙砂巖試樣試驗方案
Table 1. Test scheme of fractured sandstone samples
Fracture inclination, α/(°) Sample No. Confining pressure/MPa Water pressure/MPa Single fracture T-shaped fracture Y-shaped fracture 0 SF0 ST0 SY0 10 3 15 SF15 ST15 SY15 10 3 30 SF30 ST30 SY30 10 3 45 SF45 ST45 SY45 10 3 60 SF60 ST60 SY60 10 3 75 SF75 ST75 SY75 10 3 90 SF90 ST90 SY90 10 3 表 2 完整砂巖試樣試驗方案
Table 2. Test scheme of intact sandstone samples
Name Sample No. Confining pressure/MPa Water pressure/MPa Intact sample without
water pressureW1 10 Intact sample with
water pressureW2 10 3 表 3 多形態裂隙與完整砂巖試樣峰值強度對比
Table 3. Peak strength comparison between multiple-shape prefabricated fractures and intact sandstone samples
Fracture inclination, α/(°) Percentage drop in peak strength compared with intact samples without water pressure/% Percentage drop in peak strength compared with intact samples with water pressure/% Single fracture T-shaped fracture Y-shaped fracture Single fracture T-shaped fracture Y-shaped fracture 0 19.29 34.89 43.85 14.82 31.28 40.74 15 30.60 33.79 37.91 26.75 30.12 34.47 30 41.53 46.09 43.07 38.28 43.11 39.91 45 37.54 39.32 43.32 34.08 35.95 40.17 60 40.39 47.23 44.30 37.08 44.31 41.21 75 44.31 42.76 37.28 41.23 39.59 33.80 90 36.45 36.02 43.92 32.93 32.47 40.81 -
參考文獻
[1] Cai M F, Duo J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43 [2] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124 [3] Li C H. Types and development prospects of geothermal resources. Manage Strategy Qinghai Land Resour, 2014(4): 48 doi: 10.3969/j.issn.1671-8704.2014.04.019李長輝. 地熱資源類型及發展前景. 青海國土經略, 2014(4):48 doi: 10.3969/j.issn.1671-8704.2014.04.019 [4] Zhou Z Y, Liu S L, Liu J X. Study on the characteristics and development strategies of geothermal resources in China. J Nat Resour, 2015, 30(7): 1210 doi: 10.11849/zrzyxb.2015.07.013周總瑛, 劉世良, 劉金俠. 中國地熱資源特點與發展對策. 自然資源學報, 2015, 30(7):1210 doi: 10.11849/zrzyxb.2015.07.013 [5] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02 [6] Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China. Water Resour Hydropower Eng, 2019, 50(6): 187王轉轉, 歐成華, 王紅印, 等. 國內地熱資源類型特征及其開發利用進展. 水利水電技術, 2019, 50(6):187 [7] Brace W F, Bombolakis E G. A note on brittle crack growth in compression. J Geophys Res, 1963, 68(12): 3709 doi: 10.1029/JZ068i012p03709 [8] Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res Solid Earth, 1982, 87(B8): 6805 doi: 10.1029/JB087iB08p06805 [9] Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall, 1986, 34(3): 497 doi: 10.1016/0001-6160(86)90086-6 [10] Cannon N P, Schulson E M, Smith T R, et al. Wing cracks and brittle compressive fracture. Acta Metall Mater, 1990, 38(10): 1955 doi: 10.1016/0956-7151(90)90307-3 [11] Huang M, Xiao T L. Mechanical and deformation characteristics of prefabricated single-fracture rock-like under uniaxial compression. J Yangtze Univ Nat Sci Ed, 2020, 17(1): 115黃梅, 肖桃李. 單軸壓縮條件下預制單裂隙類巖石的力學和變形特性研究. 長江大學學報(自然科學版), 2020, 17(1):115 [12] Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588韓震宇, 李地元, 朱泉企, 等. 含端部裂隙大理巖單軸壓縮破壞及能量耗散特性. 工程科學學報, 2020, 42(12):1588 [13] Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43郭奇峰, 武旭, 蔡美峰, 等. 預制裂隙花崗巖的強度特征與破壞模式試驗. 工程科學學報, 2019, 41(1):43 [14] Zhang J, Guo Q F, Cai M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load. Chin J Eng, 2021, 43(5): 636張杰, 郭奇峰, 蔡美峰, 等. 循環擾動荷載作用下花崗巖中裂隙萌生擴展過程的顆粒流模擬. 工程科學學報, 2021, 43(5):636 [15] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001 [16] Modiriasari A, Bobet A, Pyrak-Nolte L J. Monitoring rock damage caused by cyclic loading using seismic wave transmission and reflection // Proceedings of 50th U. S. Rock Mechanics/Geomechanics Symposium. Houston, 2016: 569 [17] Petit J P, Barquins M. Can natural faults propagate under Mode II conditions? Tectonics, 1988, 7(6): 1243 [18] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9 [19] Saimoto A, Nisitani H. Crack propagation criterion and simulation under biaxial loading[J/OL]. WTI Press (2002-09-25)[2022-07-04].https://www.witpress.com/Secure/elibrary/papers/DM02/DM02009FU.pdf [20] Mughieda O, Karasneh I. Coalescence of offset rock joints under biaxial loading. Geotech Geol Eng, 2006, 24(4): 985 doi: 10.1007/s10706-005-8352-0 [21] Liu X W, Liu Q S, Huang S B, et al. Fracture propagation characteristic and micromechanism of rock-like specimens under uniaxial and biaxial compression. Shock Vib, 2016, 2016: 1 [22] Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct, 2008, 45(17): 4796 doi: 10.1016/j.ijsolstr.2008.04.023 [23] Huang D, Gu D M, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech Rock Eng, 2016, 49(2): 375 doi: 10.1007/s00603-015-0757-3 [24] Zhao C, Xing J Q, Niu J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 2823趙程, 幸金權, 牛佳倫, 等. 水-力共同作用下預制裂隙類巖石試樣裂紋擴展試驗研究. 巖石力學與工程學報, 2019, 38(S1): 2823 [25] Li Y, Cai W B, Zhu W S, et al. Experiment and particle flow analysis of crack propagation evolution mechanism under hydraulic coupling. Adv Eng Sci, 2020, 52(3): 21李勇, 蔡衛兵, 朱維申, 等. 水力耦合作用下裂紋擴展演化機理的試驗和顆粒流分析. 工程科學與技術, 2020, 52(3):21 [26] Wei C, Zhu W S, Li Y, et al. Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks. Rock Soil Mech, 2019, 40(11): 4533魏超, 朱維申, 李勇, 等. 巖石傾斜裂隙與水平裂隙擴展貫通試驗及數值模擬研究. 巖土力學, 2019, 40(11):4533 [27] Min K S, Zhang Z, Ghassemi A. Numerical analysis of multiple fracture propagation in heterogeneous rock // Proceedings of 44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City, 2010: 363 [28] Kamali A, Ghassemi A. Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation. Geothermics, 2018, 76: 93 doi: 10.1016/j.geothermics.2018.07.002 [29] Yang Y N, Ren X Y, Zhou L, et al. Numerical study on competitive propagation of multi-perforation fractures considering full hydro-mechanical coupling in fracture-pore dual systems. J Petroleum Sci Eng, 2020, 191: 107109 doi: 10.1016/j.petrol.2020.107109 [30] Kamali A, Ghassemi A. Analysis of natural fracture shear slip and propagation in response to injection // Proceedings of Stanford Geothermal Workshop. Stanford, 2016: 22 [31] Zhang M. Theory and apparatus for testing low-permeability of rocks in laboratory. Chin J Rock Mech Eng, 2003, 22(6): 919 doi: 10.3321/j.issn:1000-6915.2003.06.007張銘. 低滲透巖石實驗理論及裝置. 巖石力學與工程學報, 2003, 22(6):919 doi: 10.3321/j.issn:1000-6915.2003.06.007 [32] Wang P F, Li C H, Ma X W, et al. Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone. Rock Soil Mech, 2018, 39(Suppl 2): 53王鵬飛, 李長洪, 馬學文, 等. 斷層帶不同含石率土石混合體滲流特性試驗研究. 巖土力學, 2018, 39(S2): 53 [33] Zhang Y, Wu X, Guo Q F, et al. Research on the mechanical properties and damage constitutive model of multi-shape fractured sandstone under hydro-mechanical coupling. Minerals, 2022, 12(4): 436 doi: 10.3390/min12040436 -