<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

多形態裂隙砂巖水力耦合破壞過程與增透機理試驗研究

張英 郭奇峰 席迅 蔡美峰 倫嘉云 潘繼良

張英, 郭奇峰, 席迅, 蔡美峰, 倫嘉云, 潘繼良. 多形態裂隙砂巖水力耦合破壞過程與增透機理試驗研究[J]. 工程科學學報, 2022, 44(10): 1778-1788. doi: 10.13374/j.issn2095-9389.2022.07.04.004
引用本文: 張英, 郭奇峰, 席迅, 蔡美峰, 倫嘉云, 潘繼良. 多形態裂隙砂巖水力耦合破壞過程與增透機理試驗研究[J]. 工程科學學報, 2022, 44(10): 1778-1788. doi: 10.13374/j.issn2095-9389.2022.07.04.004
ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. doi: 10.13374/j.issn2095-9389.2022.07.04.004
Citation: ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. doi: 10.13374/j.issn2095-9389.2022.07.04.004

多形態裂隙砂巖水力耦合破壞過程與增透機理試驗研究

doi: 10.13374/j.issn2095-9389.2022.07.04.004
基金項目: 國家重點研發計劃資助項目(2021YFC3001301)
詳細信息
    通訊作者:

    E-mail: xixun@ustb.edu.cn

  • 中圖分類號: TG142.71

Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures

More Information
  • 摘要: 水力耦合激活巖石天然裂隙,誘導裂隙擴展形成復雜裂隙網絡,增加巖石滲透性是礦產地熱共采體系中的關鍵技術。本文通過預制含單裂隙、T型裂隙和Y型裂隙的砂巖試樣,進行三軸水力耦合試驗,研究多形態裂隙砂巖的關鍵閾值(閉合應力、起裂應力、損傷應力、峰值強度)、彈性模量、泊松比以及破壞模式等力學特性,同時開展裂隙漸進演化過程中聲發射和滲透率的演化規律研究,進一步分析水力耦合作用下裂隙巖石增透機理。結果表明:多形態預制裂隙砂巖試樣在水力耦合作用下,既有裂隙均通過拉伸、剪切或混合模式擴展形成次生裂紋,構成裂隙網絡,試樣滲透率顯著增加。單裂隙試樣的次生裂隙以剪切破壞為主,T型和Y型裂隙試樣的次生裂隙為剪切破壞和張拉-剪切破壞兩類。此外,多形態裂隙對試樣強度的影響大于水的弱化作用。隨著軸壓增大,巖石滲透率峰前階段先減小后增大,達到強度破壞時突跳增大。當試樣達到峰值后應力突然下降時,滲透率達到最大值,滲透率增透效果最好。預制裂隙角度和形態的變化對突跳系數的影響幅度較小,單裂隙的平均突跳系數值大于Y型裂隙大于T型裂隙。研究結果有助于理解裂隙破壞和流體流動行為,進而指導礦產地熱共采的工程。

     

  • 圖  1  預制裂隙砂巖試樣加工流程. (a) 試樣模型示意圖; (b) 砂巖試樣實物圖

    Figure  1.  Processing flow of sandstone samples with prefabricated fracture: (a) sample models; (b) physical images of sandstone samples

    圖  2  水力耦合試驗設備. (a) MTS815伺服剛性試驗機; (b) Teledyne ISCO D-Series 泵; (c) 聲發射探頭分布圖

    Figure  2.  Test equipment: (a) MTS815 rock mechanics testing machine; (b) Teledyne ISCO D-Series pumps; (c) distribution map of acoustic emission probes

    圖  3  完整和單裂隙試樣不同閾值、應力比率與傾角關系. (a)不同閾值與傾角關系;(b)應力比率與傾角關系

    Figure  3.  Relationship of fracture inclination with different thresholds and the stress ratios of intact and single-fracture samples: (a) relationship between different thresholds and fracture inclination; (b) relationship between stress ratios and fracture inclination

    圖  4  完整和T型裂隙不同閾值、應力比率與傾角關系. (a)不同閾值與傾角關系; (b)應力比率與傾角關系

    Figure  4.  Relationship of fracture inclination with different thresholds and the stress ratios of intact and T-shaped fracture samples: (a) relationship between different thresholds and fracture inclination; (b) relationship between stress ratios and fracture inclination

    圖  5  完整和Y型裂隙不同閾值、應力比率與傾角關系. (a)不同閾值與傾角關系; (b)應力比率與傾角關系

    Figure  5.  Relationship of fracture inclination with different thresholds and stress ratios of intact and Y-shaped fracture samples: (a) relationship between different thresholds and fracture inclination; (b) relationship between stress ratios and fracture inclination

    圖  6  完整和單裂隙、T型、Y型裂隙彈性模量、泊松比傾角關系. (a)彈性模量與傾角關系; (b)泊松比與傾角關系

    Figure  6.  Relationship between the elastic modulus and Poisson's ratio of intact and single fracture, T-shaped, and Y-shaped fracture samples: (a) relationship between the elastic modulus and fracture inclination; (b) relationship between Poisson's ratio and fracture inclination

    圖  7  單裂隙(a)、T型(b)和Y型(c)裂隙試樣應力和振鈴計數與時間關系

    Figure  7.  Relationship between stress, the ringing count of single (a), T-shaped (b), and Y-shaped (c) fracture specimens, and time

    圖  8  水力耦合作用下誘發裂隙擴展規律:單裂隙(a)、T型(b)和Y型(c)裂隙試樣破壞模式

    Figure  8.  Propagation law of induced cracks under the action of hydraulic coupling: failure modes of single (a), T-shaped (b), and Y- shaped (c) fracture specimens

    圖  9  單裂隙(a)、T型(b)和Y型(c)裂隙試樣應力、滲透率與時間關系

    Figure  9.  Relationship between stress, permeability, and time of single (a), T-shaped (b), and Y-shaped (c) fracture specimens

    表  1  裂隙砂巖試樣試驗方案

    Table  1.   Test scheme of fractured sandstone samples

    Fracture inclination, α/(°)Sample No.Confining pressure/MPaWater pressure/MPa
    Single fractureT-shaped fractureY-shaped fracture
    0SF0ST0SY0103
    15SF15ST15SY15103
    30SF30ST30SY30103
    45SF45ST45SY45103
    60SF60ST60SY60103
    75SF75ST75SY75103
    90SF90ST90SY90103
    下載: 導出CSV

    表  2  完整砂巖試樣試驗方案

    Table  2.   Test scheme of intact sandstone samples

    NameSample No.Confining pressure/MPaWater pressure/MPa
    Intact sample without
    water pressure
    W110
    Intact sample with
    water pressure
    W2103
    下載: 導出CSV

    表  3  多形態裂隙與完整砂巖試樣峰值強度對比

    Table  3.   Peak strength comparison between multiple-shape prefabricated fractures and intact sandstone samples

    Fracture inclination, α/(°)Percentage drop in peak strength compared with intact samples without water pressure/%Percentage drop in peak strength compared with intact samples with water pressure/%
    Single fractureT-shaped fractureY-shaped fractureSingle fractureT-shaped fractureY-shaped fracture
    019.2934.8943.85 14.8231.2840.74
    1530.6033.7937.9126.7530.1234.47
    3041.5346.0943.07 38.2843.1139.91
    4537.5439.3243.32 34.0835.9540.17
    6040.3947.2344.30 37.0844.3141.21
    7544.3142.7637.28 41.2339.5933.80
    9036.4536.0243.92 32.9332.4740.81
    下載: 導出CSV
    久色视频
  • [1] Cai M F, Duo J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43

    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
    [2] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124

    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124
    [3] Li C H. Types and development prospects of geothermal resources. Manage Strategy Qinghai Land Resour, 2014(4): 48 doi: 10.3969/j.issn.1671-8704.2014.04.019

    李長輝. 地熱資源類型及發展前景. 青海國土經略, 2014(4):48 doi: 10.3969/j.issn.1671-8704.2014.04.019
    [4] Zhou Z Y, Liu S L, Liu J X. Study on the characteristics and development strategies of geothermal resources in China. J Nat Resour, 2015, 30(7): 1210 doi: 10.11849/zrzyxb.2015.07.013

    周總瑛, 劉世良, 劉金俠. 中國地熱資源特點與發展對策. 自然資源學報, 2015, 30(7):1210 doi: 10.11849/zrzyxb.2015.07.013
    [5] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02

    王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02
    [6] Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China. Water Resour Hydropower Eng, 2019, 50(6): 187

    王轉轉, 歐成華, 王紅印, 等. 國內地熱資源類型特征及其開發利用進展. 水利水電技術, 2019, 50(6):187
    [7] Brace W F, Bombolakis E G. A note on brittle crack growth in compression. J Geophys Res, 1963, 68(12): 3709 doi: 10.1029/JZ068i012p03709
    [8] Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res Solid Earth, 1982, 87(B8): 6805 doi: 10.1029/JB087iB08p06805
    [9] Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall, 1986, 34(3): 497 doi: 10.1016/0001-6160(86)90086-6
    [10] Cannon N P, Schulson E M, Smith T R, et al. Wing cracks and brittle compressive fracture. Acta Metall Mater, 1990, 38(10): 1955 doi: 10.1016/0956-7151(90)90307-3
    [11] Huang M, Xiao T L. Mechanical and deformation characteristics of prefabricated single-fracture rock-like under uniaxial compression. J Yangtze Univ Nat Sci Ed, 2020, 17(1): 115

    黃梅, 肖桃李. 單軸壓縮條件下預制單裂隙類巖石的力學和變形特性研究. 長江大學學報(自然科學版), 2020, 17(1):115
    [12] Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588

    韓震宇, 李地元, 朱泉企, 等. 含端部裂隙大理巖單軸壓縮破壞及能量耗散特性. 工程科學學報, 2020, 42(12):1588
    [13] Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43

    郭奇峰, 武旭, 蔡美峰, 等. 預制裂隙花崗巖的強度特征與破壞模式試驗. 工程科學學報, 2019, 41(1):43
    [14] Zhang J, Guo Q F, Cai M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load. Chin J Eng, 2021, 43(5): 636

    張杰, 郭奇峰, 蔡美峰, 等. 循環擾動荷載作用下花崗巖中裂隙萌生擴展過程的顆粒流模擬. 工程科學學報, 2021, 43(5):636
    [15] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001
    [16] Modiriasari A, Bobet A, Pyrak-Nolte L J. Monitoring rock damage caused by cyclic loading using seismic wave transmission and reflection // Proceedings of 50th U. S. Rock Mechanics/Geomechanics Symposium. Houston, 2016: 569
    [17] Petit J P, Barquins M. Can natural faults propagate under Mode II conditions? Tectonics, 1988, 7(6): 1243
    [18] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
    [19] Saimoto A, Nisitani H. Crack propagation criterion and simulation under biaxial loading[J/OL]. WTI Press (2002-09-25)[2022-07-04].https://www.witpress.com/Secure/elibrary/papers/DM02/DM02009FU.pdf
    [20] Mughieda O, Karasneh I. Coalescence of offset rock joints under biaxial loading. Geotech Geol Eng, 2006, 24(4): 985 doi: 10.1007/s10706-005-8352-0
    [21] Liu X W, Liu Q S, Huang S B, et al. Fracture propagation characteristic and micromechanism of rock-like specimens under uniaxial and biaxial compression. Shock Vib, 2016, 2016: 1
    [22] Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct, 2008, 45(17): 4796 doi: 10.1016/j.ijsolstr.2008.04.023
    [23] Huang D, Gu D M, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech Rock Eng, 2016, 49(2): 375 doi: 10.1007/s00603-015-0757-3
    [24] Zhao C, Xing J Q, Niu J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 2823

    趙程, 幸金權, 牛佳倫, 等. 水-力共同作用下預制裂隙類巖石試樣裂紋擴展試驗研究. 巖石力學與工程學報, 2019, 38(S1): 2823
    [25] Li Y, Cai W B, Zhu W S, et al. Experiment and particle flow analysis of crack propagation evolution mechanism under hydraulic coupling. Adv Eng Sci, 2020, 52(3): 21

    李勇, 蔡衛兵, 朱維申, 等. 水力耦合作用下裂紋擴展演化機理的試驗和顆粒流分析. 工程科學與技術, 2020, 52(3):21
    [26] Wei C, Zhu W S, Li Y, et al. Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks. Rock Soil Mech, 2019, 40(11): 4533

    魏超, 朱維申, 李勇, 等. 巖石傾斜裂隙與水平裂隙擴展貫通試驗及數值模擬研究. 巖土力學, 2019, 40(11):4533
    [27] Min K S, Zhang Z, Ghassemi A. Numerical analysis of multiple fracture propagation in heterogeneous rock // Proceedings of 44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City, 2010: 363
    [28] Kamali A, Ghassemi A. Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation. Geothermics, 2018, 76: 93 doi: 10.1016/j.geothermics.2018.07.002
    [29] Yang Y N, Ren X Y, Zhou L, et al. Numerical study on competitive propagation of multi-perforation fractures considering full hydro-mechanical coupling in fracture-pore dual systems. J Petroleum Sci Eng, 2020, 191: 107109 doi: 10.1016/j.petrol.2020.107109
    [30] Kamali A, Ghassemi A. Analysis of natural fracture shear slip and propagation in response to injection // Proceedings of Stanford Geothermal Workshop. Stanford, 2016: 22
    [31] Zhang M. Theory and apparatus for testing low-permeability of rocks in laboratory. Chin J Rock Mech Eng, 2003, 22(6): 919 doi: 10.3321/j.issn:1000-6915.2003.06.007

    張銘. 低滲透巖石實驗理論及裝置. 巖石力學與工程學報, 2003, 22(6):919 doi: 10.3321/j.issn:1000-6915.2003.06.007
    [32] Wang P F, Li C H, Ma X W, et al. Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone. Rock Soil Mech, 2018, 39(Suppl 2): 53

    王鵬飛, 李長洪, 馬學文, 等. 斷層帶不同含石率土石混合體滲流特性試驗研究. 巖土力學, 2018, 39(S2): 53
    [33] Zhang Y, Wu X, Guo Q F, et al. Research on the mechanical properties and damage constitutive model of multi-shape fractured sandstone under hydro-mechanical coupling. Minerals, 2022, 12(4): 436 doi: 10.3390/min12040436
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  402
  • HTML全文瀏覽量:  102
  • PDF下載量:  34
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-07-04
  • 網絡出版日期:  2022-08-18
  • 刊出日期:  2022-10-25

目錄

    /

    返回文章
    返回